Skip to main content
Log in

Intense turbulent convection in a horizontal plane liquid layer

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Direct numerical simulation of turbulent convection in a horizontal liquid layer heated from below is performed within the framework of the nonstationary Navier—Stokes equations with the use of the Bubnov—Galerkin method. The main attention is given to calculations for superhigh supercriticalities. Computational burden is reduced by the use of the splitting method at each step of integration. Previously, the smallness of the residual arising from substitution of simulated results into the initial system of equations is demonstrated and the residual’s dependence on the number of reference functions and supercriticality is considered. A good agreement of the results obtained with the use of different numerical implementations of the Bubnov—Galerkin procedure is shown, in particular, for the stochastic processes corresponding to a low supercriticality and appearing with the formation of strange attractors close to a Mobius strip. The calculations were carried out for a wide range of supercriticality (from 1 to 34000). It is shown that simulations and experiment are in good qualitative agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. B. McLaughlin and P. C. Martin, “Turbulence in a Statically Stressed Fluid System,” Phys. Rev. A 12, 186–203 (1975).

    Article  Google Scholar 

  2. S. Ya. Gertsenshtein and V. M. Shmidt, “Nonlinear Development and Interaction of Finite-Amplitude Disturbances During a Convective Instability of a Rotating Plane Layer,” Dokl. Akad. Nauk SSSR 225(1), 59–62 (1975).

    Google Scholar 

  3. V. N. Gryaznov and V. I. Polezhaev, Numerical Solution of Nonstationary Navier—Stokes Equations for a Turbulent Regime of Natural Convection, Preprint No. 81 (Inst. of Problems of Mechanics, Russian Academy of Sciences, 1977).

  4. F. V. Dolzhanskii, V. I. Klyatskin, A. M. Oboukhov, and A. M. Chusov, Nonlinear Systems of Hydrodynamic Type (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  5. E. N. Lorenz, “Deterministic Nonreriodic Flow,” J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  6. S. Ya. Gertsenshtein and V. N. Popov, “Integral Method of Calculating Turbulent Convection in a Horizontal Layer of a Solution,” Dokl. Akad. Nauk 363, 769–771 (1998).

    Google Scholar 

  7. I. N. Sibgatullin, S. Ya. Gertsenstein, and N. R. Sibgatullin, “Some Properties of Two-Dimensional Stochastic Regimes of Double-Diffusive Convection in Plane Layer,” Chaos 13, 1231–1241 (2003).

    Article  Google Scholar 

  8. E. B. Rodichev and O. V. Rodicheva, “Two-Dimensional Turbulence in the Rayleigh-Benard Problem,” Dokl. Akad. Nauk 359, 486–489 (1998).

    Google Scholar 

  9. S. Gertsenstein and I. Sibgatullin, “Bifurcations, Transition to Turbulence and Development of Chaotic Regimes for Double-Diffusive Convection,” WSEAS Trans. Appl. Theor. Mech. 1(1), 110–114 (2006).

    Google Scholar 

  10. V. I. Arnold and A. Avez, Problemes Ergodique de la Mechanique Classique (Gauthier Villars, Paris, 1967).

    Google Scholar 

  11. Ya. G. Sinai, “On the Concept of Entropy in Smooth Dynamical Systems,” Dokl. Akad. Nauk SSSR 124, 754 (1959).

    Google Scholar 

  12. D. V. Anosov, “Introductory Paper,” in Smooth Dynamical Systems, Ed. by A. N. Kolmogorov and S. P. Novikov (Mir, Moscow, 1977) [in Russian].

    Google Scholar 

  13. F. V. Dolzhanskii, “Mechanical Prototypes of Fundamental Hydrodynamic Invariants and Slow Manifolds,” Usp. Fiz. Nauk 175, 1257–1288 (2005).

    Article  Google Scholar 

  14. S. Smeil, “Differentiable Dynamical Systems,” Usp. Mat. Nauk 25, 113–185 (1970).

    Google Scholar 

  15. V. I. Yudovich, “Stability of Stationary Flows of a Viscous Incompressible Fluid,” Dokl. Akad. Nauk SSSR 5, 1037–1040 (1965).

    Google Scholar 

  16. G. M. Zaslavskii and R. Z. Sagdeev, Introduction into Nonlinear Physics: From Pendulum to Turbulence and Chaos (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  17. I. B. Palymskii, “Numerical Simulation of Two-Dimensional Convection at a High Supercriticality,” Usp. Mekh., No. 4, 3–28 (2006).

  18. R. Farhadien and R. S. Tankin, “Interferometric Study of Two-Dimensional Benard Convection Cells,” J. Fluid Mech. 66, 739–752 (1974).

    Article  Google Scholar 

  19. R. A. Denton and I. R. Wood, “Turbulent Convection between Two Horizontal Plates,” Int. J. Heat Mass Transfer 22, 1339–1346 (1979).

    Article  Google Scholar 

  20. H. T. Rossby, “A Study of Benard Convection with and Without Rotation,” J. Fluid Mech. 36, 309–335 (1969).

    Article  Google Scholar 

  21. D. E. Fitzjarrald, “An Experimental Study of Turbulent Convection in Air,” J. Fluid Mech. 73, 693–719 (1976).

    Article  Google Scholar 

  22. A. V. Malevsky and D. A. Yuen, “Characteristics-Based Methods Applied to Infinite Prandtl Number Thermal Convection in the Hard Turbulent Regime,” Phys. Fluids. A 3, 2105–2115 (1991).

    Article  Google Scholar 

  23. A. M. Garon and R. J. Goldstein, “Velocity and Heat Transfer Measurements in Thermal Convection,” Phys. Fluids 16, 1818–1825 (1973).

    Article  Google Scholar 

  24. T. Y. Chu and R. J. Goldstein, “Turbulent Convection in a Horizontal Layer of Water,” J. Fluid Mech. 60, 141–159 (1973).

    Article  Google Scholar 

  25. J. W. Deardorff and G. E. Willis, “Investigation of Turbulent Thermal Convection between Horizontal Plates,” J. Fluid Mech. 28, 675–704 (1967).

    Article  Google Scholar 

  26. S. Globe and D. Dropkin, “Natural-Convection Heat Transfer in Liquids Confined by Two Horizontal Plates and Heated Below,” J. Heat Transfer 81, 24–28 (1959).

    Google Scholar 

  27. W. V. R. Malkus, “Discrete Transitions in Turbulent Convection,” Proc. R. Soc. Ser. A, London 225(1161), 185–195 (1954).

    Article  Google Scholar 

  28. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of an Incompressible Fluid (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  29. G. Neumann, “Three-Dimensional Numerical Simulations of Buoyancy-Driven Convection in Vertical Cylinders Heated from Below,” J. Fluid Mech. 214, 559 (1990).

    Article  Google Scholar 

  30. X.-Z. Wu, L. Kananoff, A. Libchaber, and M. Sano, “Frequency Power Spectrum of Temperature Fluctuations in Free Convection,” Phys. Rev. Lett. 64, 2140–2143 (1990).

    Article  Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: Hydrodynamics (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  32. R. M. Kerr, “Rayleigh Number Scaling in Numerical Convection,” J. Fluid Mech. 310, 139–179 (1996).

    Article  Google Scholar 

  33. S. Cioni, S. Ciliberto, and J. Sommeria, “Temperature Structure Functions in Turbulent Convection at Low Prandtl Number,” Europhys. Lett. 32, 413–418 (1995).

    Article  Google Scholar 

  34. P. G. Frik, Turbulence: Approaches and Models (Inst. of Computer Studies, Moscow, 2003) [in Russian].

    Google Scholar 

  35. S. Ashkenazi and V. Steinberg, “Spectra and Statistics of Velocity and Temperature Fluctuations in Turbulent Convection,” Phys. Rev. Lett. 83, 4760–4763 (1999).

    Article  Google Scholar 

  36. X.-D. Shang and K.-Q. Xia, “Scaling of the Velocity Power Spectra in Turbulent Thermal Convection,” Phys. Rev. E 64, 065301-1-4 (2001).

    Article  Google Scholar 

  37. A. V. Malevsky, “Spline-Characteristic Method for Simulation of Convective Turbulence,” J. Comput. Phys. 123, 466–475 (1996).

    Article  Google Scholar 

  38. R. A. Brazhe and O. N. Kudelin, “Experimental Implementation of the Lorenz Model of a Convective Instability of a Fluid in a Vertical Toroidal Cell,” Izv. Vyssh. Uchebn. Zaved., Probl. Nonlin. Dyn., 14(6), 88–98 (2006).

    Google Scholar 

  39. J. J. Niemela, L. Skrbek, K. R. Sreenivasan, et al., “Turbulent Convection at Very High Rayleigh Numbers,” Nature 404(20), 837–840 (2000).

    Article  Google Scholar 

  40. R. Verzicco and R. Camussi, “Numerical Experiments on Strongly Turbulent Thermal Convection in a Slender Cylindrical Cell,” J. Fluid Mech. 477, 19–49 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Sibgatullin.

Additional information

Original Russian Text © S.Ya. Gertsenshtein, I.A. Palymskii, I.N. Sibgatullin, 2008, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2008, Vol. 44, No. 1, pp. 75–85.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gertsenshtein, S.Y., Palymskii, I.A. & Sibgatullin, I.N. Intense turbulent convection in a horizontal plane liquid layer. Izv. Atmos. Ocean. Phys. 44, 72–82 (2008). https://doi.org/10.1134/S0001433808010088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433808010088

Keywords

Navigation