Skip to main content
Log in

Intraband population inversion and amplification of IR radiation through charge-carrier injection into quantum wells and quantum dots

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

A mechanism is proposed for obtaining intraband population inversion of electrons in size-quantization levels through the injection of electron-hole pairs into the i region of a heterostructure with quantum wells or quantum dots. Key elements of the mechanism are the simultaneous generation of interband (hvE g ) near-IR radiation and the presence of a “metastable” level. In quantum wells such a level can be produced by making use of the weak overlap of the wave functions of electrons in the levels of a quantum well of complicated configuration and exploiting the characteristic features of the interaction of electrons with optical phonons in polar semiconductors. In quantum dots such a level forms as a result of the phonon bottleneck effect. Estimates are made of the gain for mid-IR radiation in intraband optical transitions of electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Kazarinov and R. A. Suris, Fiz. Tekh. Poluprovodn. 5, 797 (1971); 6, 148 (1972) [Sov. Phys. Semicond. 5, 707 (1971); 6, 120 (1972)].

    Google Scholar 

  2. J. Faist, F. Capasso, D. L. Sivco et al., Science 264, 553 (1994).

    ADS  Google Scholar 

  3. O. Gauthier-Lafaye, S. Savage, P. Boucaud et al., Appl. Phys. Lett. 70, 1 (1997).

    Article  Google Scholar 

  4. H. Sakaki, T. Noda, K. Hirakawa et al., Appl. Phys. Lett. 51, 1 (1997).

    Google Scholar 

  5. W. Tsang (ed.), Semiconductor Injection Lasers, Academic Press, New York, 1985, Chap. 2 [Russian translation, Radio i Svyaz’, Moscow, 1990].

    Google Scholar 

  6. T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys. 54(2), 437–672 (1982).

    Article  ADS  Google Scholar 

  7. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).

    Google Scholar 

  8. N. N. Ledentsov, in The Physics of Semiconductors, edited by M. Sheffler and R. Zimmerman, World Scientific, Singapore, 1997, Vol. 1, p. 19.

    Google Scholar 

  9. B. T. Miller, W. Hansen, S. Manus et al., Phys. Rev. B 56, 6764 (1997).

    ADS  Google Scholar 

  10. S. Sauvage, P. Boucaud, F. H. Julien et al., Appl. Phys. Lett. 71, 2785 (1997).

    ADS  Google Scholar 

  11. G. G. Zegrya and A. S. Polkovnikov, Zh. Éksp. Teor. Fiz. 113, 1491 (1998) [JETP 86, 815 (1998)].

    Google Scholar 

  12. L. E. Vorob’ev, D. A. Firsov, V. A. Shalygin et al., JETP Lett. 67, 275 (1998).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Pis’ma Zh. Éksp. Teor. Fiz. 68, No. 5, 392–399 (10 September 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorob’ev, L.E. Intraband population inversion and amplification of IR radiation through charge-carrier injection into quantum wells and quantum dots. Jetp Lett. 68, 417–425 (1998). https://doi.org/10.1134/1.567883

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.567883

PACS numbers

Navigation