Skip to main content
Log in

Controllable broadening of zero-phonon lines by means of the Doppler effect and prospects of using spectral hole burning in optical informatics

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

An attempt is made to extend the spectacular variant of optical informatics efficient at liquid helium temperature—holography based on zero-phonon lines (ZPLs) and spectral hole burning, including time-and-space-domain holography—to higher temperatures, up to room temperature. At room temperature, both optical and Mössbauer narrow ZPLs exist; however, they do not have the inhomogeneous broadening that transforms a ZPL into a broad band, which is necessary for informatics based on light pulses. The idea of producing a band with an appropriate width from narrow ZPLs by using the Doppler effect is advanced. A variant of experimental realization of this idea by means of a scheme with a rotating disk covered by a layer of a material sensitive to spectral hole burning is considered. Numerical estimates were performed for narrow optical ZPLs and for the yet experimentally unconfirmed Mössbauer ZPL in the visible spectral range (dark blue nuclear light) that corresponds to a transition between the two low-lying levels of the 229Th isomer. For the narrowest optical ZPLs known at present, with a width of about 100 Hz, the estimates give favorable results, in particular, for prospects of realizing a photoelectrically accumulated stimulated photon echo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. K. Rebane, J. Lumin. 100, 219 (2003).

    Google Scholar 

  2. K. K. Rebane and A. K. Rebane, in Molecular Electronics, Properties, Dynamics and Applications, Ed. by G. Mahler, V. May, and M. Schreiber (Marcel Dekker, New York, 1996), p. 257; C. De Caro, S. Bernet, A. Renn, and U. P. Wild, in Molecular Electronics, Properties, Dynamics and Applications, Ed. by G. Mahler, V. May, and M. Schreiber (Marcel Dekker, New York, 1996), p. 303.

    Google Scholar 

  3. K. K. Rebane, Chem. Phys. 189, 139 (1994).

    Article  Google Scholar 

  4. Persistent Spectral Hole Burning: Science and Applications, Ed. by W. E. Moerner (Springer, Berlin, 1988); T. Basche, W. E. Moerner, M. Orrit, and U. P. Wild, Single-Molecule Optical Detection (Weinheim, New York, 1997).

    Google Scholar 

  5. K. K. Rebane, in Current Trends in Optics, Ed. by J. C. Dainty (Academic, London, 1994), p. 177; A. Rebane, in Trends in Optics, Research, Developments and Applications, Ed. by A. Consortini (Academic, New York, 1996), pp. 165–188; A. Rebane, Thesis (Lab. of Phys. Chemistry, ETH-Zentrum, Zürich, 1995), CH-8092; F. Güttler, Dissertation No. 10707 (ETH, Zürich, 1994).

    Google Scholar 

  6. K. Rebane, Mol. Cryst. Liq. Cryst. 236, 13 (1993).

    Google Scholar 

  7. R. Jaaniso and H. Bill, J. Lumin. 64, 173 (1995).

    Google Scholar 

  8. K. Rebane, in Proceedings of 8th HBRS-2003 (Bozeman, Montana), J. Lumin., Special Issue (2004) (in press).

  9. C. W. Reich and R. G. Helmer, Phys. Rev. Lett. 64, 271 (1990); R. G. Helmer and C. W. Reich, Phys. Rev. C 49, 1845 (1994).

    Article  ADS  Google Scholar 

  10. E. V. Tkalya, A. N. Zherikin, and V. I. Zhudov, Phys. Rev. C 61, 064308 (2000); E. V. Tkalya, Usp. Fiz. Nauk 173, 323 (2003) [Phys. Usp. 46, 315 (2003)].

    Google Scholar 

  11. A. V. Andreev, P. A. Volkov, B. M. Gordienko, et al., Kvantovaya Élektron. (Moscow) 26, 55 (1999).

    Google Scholar 

  12. S. H. Simon, A. L. Moustanas, M. Stychev, and H. Safar, Phys. Today 54 (Sept.), 38 (2001).

    Google Scholar 

  13. Physical Encyclopedia, Ed. by A. M. Prokhorov (Sovetskaya Éntsiklopedia, Moscow, 1990), Vol. 2, p. 15.

    Google Scholar 

  14. A. K. Rebane, Pis’ma Zh. Éksp. Teor. Fiz. 38, 320 (1983) [JETP Lett. 38, 383 (1983)]; A. K. Rebane, R. K. Kaarli, and P. M. Saari, Opt. Spektrosk. 55, 405 (1983) [Opt. Spectrosc. 55, 238 (1983)].

    Google Scholar 

  15. P. Saari, R. Kaarli, and A. Rebane, J. Opt. Soc. Am. 83, 527 (1986).

    Google Scholar 

  16. Y. Sun, G. M. Wang, R. L. Cone, et al., Phys. Rev. B 62, 15443 (2000).

  17. K. K. Rebane and V. V. Palm, Opt. Spektrosk. 57, 381 (1984) [Opt. Spectrosc. 57, 229 (1984)].

    Google Scholar 

  18. V. V. Khizhnyakov and I. K. Rebane, Zh. Éksp. Teor. Fiz. 74, 885 (1978) [Sov. Phys. JETP 47, 463 (1978)]; I. K. Rebane, A. L. Tuul, and V. V. Khizhnyakov, Zh. Éksp. Teor. Fiz. 77, 1302 (1979) [Sov. Phys. JETP 50, 655 (1979)].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 98, No. 5, 2005, pp. 845–849.

Original Russian Text Copyright © 2005 by Rebane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebane, K.K. Controllable broadening of zero-phonon lines by means of the Doppler effect and prospects of using spectral hole burning in optical informatics. Opt. Spectrosc. 98, 776–779 (2005). https://doi.org/10.1134/1.1929065

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1929065

Keywords

Navigation