Skip to main content
Log in

The electron energy spectrum and superconducting transition temperature of strongly correlated fermions with three-center interactions

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The renormalizations of the fermionic spectrum are considered within the framework of the t-J* model taking into account three-center interactions (H (3)) and magnetic fluctuations. Self-consistent spin dynamics equations for strongly correlated fermions with three-center interactions were obtained to calculate quasi-spin correlators. A numerical self-consistent solution to a system of ten equations was obtained to show that, in the nearest-neighbor approximation, simultaneously including H (3) and magnetic fluctuations at n>n 1 (n 1 ≈ 0.72 for 2t/U = 0.25) caused qualitative changes in the structure of the energy spectrum. A new Van Hove singularity is then induced in the density of states, and an additional maximum appears in the T c(n) concentration dependence of the temperature of the transition to the superconducting phase with order parameter symmetry of the d x 2y 2 type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Science 235, 1196 (1987).

    ADS  Google Scholar 

  2. R. O. Zaitsev and V. A. Ivanov, Pis’ma Zh. Éksp. Teor. Fiz. 46, 140 (1987) [JETP Lett. 46, S116 (1987)].

    Google Scholar 

  3. N. M. Plakida, High-Temperature Superconductors (Springer, Moscow, 1995; Mezhdun. Progr. Obraz., Moscow, 1996).

    Google Scholar 

  4. Yu. A. Izyumov, Usp. Fiz. Nauk 167, 465 (1997) [Phys. Usp. 40, 445 (1997)].

    Google Scholar 

  5. S. G. Ovchinnikov, Usp. Fiz. Nauk 167, 1043 (1997) [Phys. Usp. 40, 993 (1997)].

    Google Scholar 

  6. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    ADS  Google Scholar 

  7. M. A. Baranov, A. V. Chubukov, and M. Yu. Kagan, Int. J. Mod. Phys. B 6, 2471 (1992).

    ADS  Google Scholar 

  8. L. P. Bulaevskii, É. L. Nagaev, and D. L. Khomskii, Zh. Éksp. Teor. Fiz. 54, 1562 (1968) [Sov. Phys. JETP 27, 836 (1968)].

    Google Scholar 

  9. K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C 10, L271 (1977).

    Article  ADS  Google Scholar 

  10. Q. L. Li, E. C. Koltenbah, and R. Joynt, Phys. Rev. B 48, 437 (1993).

    ADS  Google Scholar 

  11. V. Yu. Yushankhai, V. S. Oudovenko, and R. Hayn, Phys. Rev. B 55, 15562 (1997).

  12. J. E. Hirsch, Phys. Lett. A 136, 153 (1989).

    Article  ADS  Google Scholar 

  13. V. Yu. Yushankhai, G. M. Vujicic, and R. B. Zakula, Phys. Lett. A 151, 254 (1990).

    Article  ADS  Google Scholar 

  14. V. V. Val’kov, T. A. Val’kova, D. M. Dzebisashvili, and S. G. Ovchinnikov, Pis’ma Zh. Éksp. Teor. Fiz. 75, 450 (2002) [JETP Lett. 75, 378 (2002)].

    Google Scholar 

  15. A. P. Kampf, Phys. Rep. 249, 219 (1994).

    Article  ADS  Google Scholar 

  16. Yu. A. Izyumov, Usp. Fiz. Nauk 169, 225 (1999) [Phys. Usp. 42, 215 (1999)].

    Google Scholar 

  17. N. M. Plakida, Pis’ma Zh. Éksp. Teor. Fiz. 74, 38 (2001) [JETP Lett. 74, 36 (2001)].

    Google Scholar 

  18. R. O. Kuzian, R. Hayn, A. F. Barabanov, and L. A. Maksimov, Phys. Rev. B 58, 6194 (1998).

    Article  ADS  Google Scholar 

  19. M. M. Korshunov, S. G. Ovchinnikov, and A. V. Sherman, Pis’ma Zh. Éksp. Teor. Fiz. 80, 45 (2004) [JETP Lett. 80, 39 (2004)].

    Google Scholar 

  20. N. N. Bogolyubov, Lectures on Quantum Statistics (Naukova Dumka, Kiev, 1949; Gordon and Breach, London, 1967, 1970), Vols. 1, 2.

    Google Scholar 

  21. G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun. 63, 973 (1987).

    Article  Google Scholar 

  22. N. M. Plakida, V. Yu. Yushankhay, and I. V. Stasyuk, Physica C (Amsterdam) 162–164, 787 (1989).

    Google Scholar 

  23. V. Yu. Yushankhay, N. M. Plakida, and P. Kalinay, Physica C (Amsterdam) 174, 401 (1991).

    ADS  Google Scholar 

  24. H. Shimahara and S. Takada, J. Phys. Soc. Jpn. 60, 2394 (1991).

    Article  Google Scholar 

  25. H. Shimahara and S. Takada, J. Phys. Soc. Jpn. 61, 989 (1992).

    Google Scholar 

  26. A. F. Barabanov and V. M. Berezovskii, Zh. Éksp. Teor. Fiz. 106, 1156 (1994) [JETP 79, 627 (1994)].

    Google Scholar 

  27. A. F. Barabanov, A. A. Kovalev, O. V. Urazaev, and A. M. Belemouk, Phys. Lett. A 265, 221 (2000).

    Article  ADS  Google Scholar 

  28. V. V. Val’kov and D. M. Dzebisashvili, Pis’ma Zh. Éksp. Teor. Fiz. 77, 450 (2003) [JETP Lett. 77, 381 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 127, No. 3, 2005, pp. 686–695.

Original Russian Text Copyright © 2005 by Val’kov, Dzebisashvili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Val’kov, V.V., Dzebisashvili, D.M. The electron energy spectrum and superconducting transition temperature of strongly correlated fermions with three-center interactions. J. Exp. Theor. Phys. 100, 608–616 (2005). https://doi.org/10.1134/1.1901772

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1901772

Keywords

Navigation