Skip to main content
Log in

Selecting molecules embedded in nanodroplets (clusters) of superfluid helium

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A method of selecting molecules embedded in nanodroplets (clusters) of superfluid helium is proposed, which is based on the selective vibrational excitation of embedded molecules by intense IR laser radiation. This action leads to a significant decrease in size of the excited clusters, after which these clusters are separated with respect to size via scattering of the cluster beam on a crossing atomic beam. The method is described in detail and the possibility of selecting SF6 molecules in liquid helium nanodroplets using the excitation by CO2 laser radiation and the angular separation via scattering on a xenon atomic beam is demonstrated. The results show that, by using this technique, it is possible to separate molecules with respect to isotope (element) composition. Advantages and drawbacks of the method are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. P. Toennies, A. F. Vilesov, and K. B. Whaley, Phys. Today 54, 31 (2001).

    Google Scholar 

  2. E. Lugovoj, J. P. Toennies, S. Grebenev, et al., in Spectroscopy of Single Molecules and Clusters inside Super-fluid Helium Droplets, in Atomic and Molecular Beams, The State of the Art 2000, Ed. by R. Compargue (Springer, Berlin, 2000), p. 755.

    Google Scholar 

  3. S. Grebenev, M. Hartmann, A. Lindinger, et al., Physica B (Amsterdam) 280, 65 (2000).

    ADS  Google Scholar 

  4. S. Grebenev, B. G. Sartakov, J. P. Toennies, and A. F. Vilesov, Science 289, 1532 (2000).

    Article  ADS  Google Scholar 

  5. C. Callegary, K. L. Lehmann, R. Schmied, and G. Scoles, J. Chem. Phys. 115, 10090 (2001).

    Google Scholar 

  6. F. Stienkemeier and A. F. Vilesov, J. Chem. Phys. 115, 10119 (2001).

    Google Scholar 

  7. S. Grebenev, J. P. Toennies, and A. F. Vilesov, Science 279, 2083 (1998).

    Article  ADS  Google Scholar 

  8. J. P. Toennies and A. F. Vilesov, Annu. Rev. Phys. Chem. 49, 1 (1998).

    Article  Google Scholar 

  9. G. N. Makarov, Usp. Fiz. Nauk 174, 225 (2004) [Phys. Usp. 47, 217 (2004)].

    Google Scholar 

  10. Y. Kwon, P. Huang, M. V. Patel, et al., J. Chem. Phys. 113, 6469 (2000).

    Article  ADS  Google Scholar 

  11. J. A. Northby, J. Chem. Phys. 115, 10065 (2001).

    Google Scholar 

  12. K. Nauta and R. E. Miller, Science 283, 1895 (1999).

    Article  ADS  Google Scholar 

  13. K. Nauta and R. E. Miller, Science 287, 293 (2000).

    Article  ADS  Google Scholar 

  14. E. Lugovoj, J. P. Toennies, and A. F. Vilesov, J. Chem. Phys. 112, 8217 (2000).

    Article  ADS  Google Scholar 

  15. N. Portner, A. F. Vilesov, and M. Havenith, Chem. Phys. Lett. 368, 458 (2003).

    Article  Google Scholar 

  16. V. N. Lokhman and G. N. Makarov, Chem. Phys. Lett. 398, 453 (2004).

    Article  Google Scholar 

  17. M. Pi, R. Maiol, and M. Barranco, Phys. Rev. Lett. 82, 3093 (1999).

    Article  ADS  Google Scholar 

  18. N. Portner, J. P. Toennies, and A. F. Vilesov, J. Chem. Phys. 117, 6054 (2002).

    Google Scholar 

  19. S. A. Chin and E. Krotschek, Phys. Rev. B 52, 10405 (1995).

    Google Scholar 

  20. P. Zindzingre, M. L. Klein, and D. M. Ceperley, Phys. Rev. Lett. 63, 1601 (1989).

    ADS  Google Scholar 

  21. M. Casas, F. Dalfovo, A. Lastri, et al., Z. Phys. D 35, 67 (1995).

    Article  Google Scholar 

  22. M. V. Rama Krishna and K. B. Whaley, J. Chem. Phys. 93, 746 (1990).

    ADS  Google Scholar 

  23. P. L. Kapitsa, Zh. Éksp. Teor. Fiz. 11, 581 (1941).

    Google Scholar 

  24. M. Hartmann, R. E. Miller, J. P. Toennies, and A. F. Vilesov, Phys. Rev. Lett. 75, 1566 (1995).

    Article  ADS  Google Scholar 

  25. J. Harms, M. Hartmann, J. P. Toennies, and A. F. Vilesov, J. Mol. Spectrosc. 185, 204 (1996).

    ADS  Google Scholar 

  26. M. Hartmann, N. Portner, B. Sartakov, et al., J. Chem. Phys. 110, 5109 (1999).

    ADS  Google Scholar 

  27. D. Brink and S. Stringari, Z. Phys. D 15, 257 (1990).

    Article  Google Scholar 

  28. K. Nauta and R. E. Miller, J. Chem. Phys. 115, 8384 (2001).

    ADS  Google Scholar 

  29. F. Madeja, P. Markwick, M. Havenith, et al., J. Chem. Phys. 116, 2870 (2002).

    Article  ADS  Google Scholar 

  30. F. Dalfovo and S. Stringari, J. Chem. Phys. 115, 10078 (2001).

    Google Scholar 

  31. M. Lewerenz, B. Schilling, and J. P. Toennies, Chem. Phys. Lett. 206, 381 (1993).

    Article  Google Scholar 

  32. M. Lewerenz, B. Schilling, and J. P. Toennies, J. Chem. Phys. 102, 8191 (1995).

    Article  ADS  Google Scholar 

  33. J. Gspann, Z. Phys. B: Condens. Matter 98, 405 (1995).

    Article  Google Scholar 

  34. J. Harms, J. P. Toennies, and F. Dalfovo, Phys. Rev. B 58, 3341 (1998).

    Article  ADS  Google Scholar 

  35. H. Pauly, Atom, Molecule, and Cluster Beams II: Cluster Beams, Fast and Slow Beams, Accessory Equipment and Applications (Springer, New York, 2000).

    Google Scholar 

  36. CRC Handbook of Chemistry and Physics, Ed. by D. R. Lide, 74th ed. (CRC Press, Boca Raton, 1993–1994).

    Google Scholar 

  37. R. S. McDowell, J. B. Krohn, H. Flicker, and M. C. Vasquez, Spectrochim. Acta A 42, 351 (1986).

    Google Scholar 

  38. I. Burak, J. I. Steinfeld, and D. G. Sutton, J. Quant. Spectrosc. Radiat. Transf. 9, 959 (1969).

    Article  Google Scholar 

  39. Y. Okada, Y. Kuga, K. Sunouchi, et al., Appl. Phys. B 59, 475 (1994).

    Article  ADS  Google Scholar 

  40. G. N. Makarov, E. Ronander, S. P. van Heerden, et al., Appl. Phys. B 65, 583 (1997).

    Article  ADS  Google Scholar 

  41. V. Yu. Baranov and A. P. Dyad’kin, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (IzdAT, Moscow, 2000), p. 343 [in Russian].

    Google Scholar 

  42. A. P. Dyad’kin, V. B. Zarin, V. B. Laptev, et al., in Proceedings of the VIII All-Russian (International) Conference on Physicochemical Processes under Atomic and Molecular Selection, Zvenigorod, 2003, Ed. by Yu. A. Kolesnikov (TsNIIatominform, Moscow, 2003), p. 121.

    Google Scholar 

  43. K. Takeuchi, H. Tashiro, S. Kato, et al., J. Nucl. Sci. Technol. 26, 301 (1989).

    Google Scholar 

  44. V. Yu. Baranov, E. I. Kozlova, Yu. A. Kolesnikov, and A. A. Kotov, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (IzdAT, Moscow, 2000), p. 357 [in Russian].

    Google Scholar 

  45. G. N. Makarov and A. N. Petin, Zh. Éksp. Teor. Fiz. 119, 5 (2001) [JETP 92, 1 (2001)].

    Google Scholar 

  46. G. N. Makarov and A. N. Petin, Chem. Phys. 266, 125 (2001).

    Article  Google Scholar 

  47. G. N. Makarov, Usp. Fiz. Nauk 173, 913 (2003) [Phys. Usp. 46, 889 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 127, No. 3, 2005, pp. 570–582.

Original Russian Text Copyright © 2005 by Lokhman, Makarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lokhman, V.N., Makarov, G.N. Selecting molecules embedded in nanodroplets (clusters) of superfluid helium. J. Exp. Theor. Phys. 100, 505–515 (2005). https://doi.org/10.1134/1.1901762

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1901762

Keywords

Navigation