Skip to main content
Log in

Localization of magnetized electrons in current filaments as a fundamental cause of Coulomb explosion

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Mechanisms for generating current filaments in a dense plasma under the action of focused laser pulses and in a Z-pinch configuration are discussed. The main properties of current filaments with a zero and nonzero electron vorticity Ω e =B−(c/e)×p e that originate at magnetic fields in the range 4πn e m e c 2B 2≪4πn i m i c 2 are investigated under the conditions of Coulomb explosion at currents below the ion Alfvén current. A study is made of the equilibrium configurations of nonquasineutral current filaments in a purely longitudinal (B z) and a purely azimuthal (B θ) magnetic field and also in a more general case of a helical magnetic field, having two components, under conditions such that the charge separation occurs on a spatial scale on the order of the magnetic Debye radius r B ≃ |B|/(4πen e. It is shown that strong electric fields generated in the current filaments are comparable in magnitude to the atomic field and are capable of accelerating ions to energies of several tens of megaelectronvolts. The ion dynamics in strong electric fields of the filaments is calculated numerically and is shown to lead to the formation of collisionless shock waves on time scales on the order of several inverse ion plasma frequencies ω −1pi . The possible formation of current filaments on different spatiotemporal scales is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Burnett and G. D. Enright, IEEE J. Quantum Electron. 26, 1797 (1990).

    Article  ADS  Google Scholar 

  2. A. Pukhov, Rep. Prog. Phys. 66, 47 (2003).

    Article  ADS  Google Scholar 

  3. D. Umstadter, J. Phys. D 36, 151 (2003).

    Article  ADS  Google Scholar 

  4. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167 (2000).

    Article  ADS  Google Scholar 

  5. Yu. L. Bakshaev, P. I. Blinov, A. S. Chernenko, et al., in Proceedings of the International Conference on Research Application of Plasmas, Warsaw, 2001, Paper PS-22.

  6. Yu. L. Bakshaev, P. I. Blinov, V. V. Vikhrev, et al., Fiz. Plazmy 27, 1101 (2001) [Plasma Phys. Rep. 27, 1039 (2001)].

    Google Scholar 

  7. G. V. Ivanenkov, S. A. Pikuz, D. B. Sinars, et al., Fiz. Plazmy 26, 927 (2000) [Plasma Phys. Rep. 26, 868 (2000)].

    Google Scholar 

  8. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, and D. A. Hammer, Phys. Plasmas 8, 1305 (2001).

    Article  ADS  Google Scholar 

  9. S. A. Pikuz, D. B. Sinars, T. A. Shelkovenko, et al., Phys. Rev. Lett. 89, 035003 (2002).

    Google Scholar 

  10. T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, et al., Phys. Plasmas 9, 2165 (2002).

    Article  ADS  Google Scholar 

  11. S. A. Pikuz, D. B. Sinars, T. A. Shelkovenko, et al., Pis’ma Zh. Éksp. Teor. Fiz. 76, 571 (2002) [JETP Lett. 76, 490 (2002)].

    Google Scholar 

  12. G. V. Ivanenkov and V. Stepniewski, Fiz. Plazmy 28, 499 (2002) [Plasma Phys. Rep. 28, 457 (2002)].

    Google Scholar 

  13. J. Stamper, Science 281, 1469 (1998).

    Google Scholar 

  14. A. V. Gordeev and T. V. Losseva, Fiz. Plazmy 29, 809 (2003) [Plasma Phys. Rep. 29, 748 (2003)].

    Google Scholar 

  15. F. N. Beg, E. L. Clark, M. S. Wei, et al., Phys. Rev. Lett. 92, 095001 (2004).

  16. A. V. Gordeev and T. V. Losseva, in Proceedings of the 14th International Conference on High-Power Particle Beams and the 5th International Conference on Dense Z-Pinches, Albuquerque, NM, 2002, Book of Abstracts, p. 259; AIP Conf. Proc. 651, 420 (2002).

  17. E. W. Weibel, Phys. Rev. Lett. 2, 83 (1959).

    Article  ADS  Google Scholar 

  18. J. Sakai, S. Saito, H. Mae, et al., Phys. Plasmas 9, 2959 (2002).

    Article  ADS  Google Scholar 

  19. A. V. Gordeev and S. V. Levchenko, Pis’ma Zh. Éksp. Teor. Fiz. 67, 461 (1998) [JETP Lett. 67, 482 (1998)].

    Google Scholar 

  20. A. V. Gordeev and T. V. Losseva, Pis’ma Zh. Éksp. Teor. Fiz. 70, 669 (1999) [JETP Lett. 70, 684 (1999)].

    Google Scholar 

  21. A. V. Gordeev, Fiz. Plazmy 27, 251 (2001) [Plasma Phys. Rep. 27, 235 (2001)].

    MathSciNet  Google Scholar 

  22. F. C. Young, S. J. Stephanakis, and G. Mosher, J. Appl. Phys. 48, 3642 (1977).

    ADS  Google Scholar 

  23. G. S. Sarkisov, V. Yu. Bychenkov, V. T. Tikhonchuk, et al., Pis’ma Zh. Éksp. Teor. Fiz. 66, 787 (1997) [JETP Lett. 66, 828 (1997)].

    Google Scholar 

  24. G. A. Askar’yan, S. V. Bulanov, F. Pegoraro, and A. M. Pukhov, Pis’ma Zh. Éksp. Teor. Fiz. 60, 240 (1994) [JETP Lett. 60, 251 (1994)].

    Google Scholar 

  25. S. V. Bulanov, M. Lontano, T. Zh. Esirkepov, et al., Phys. Rev. Lett. 76, 3562 (1996).

    Article  ADS  Google Scholar 

  26. Y. Yatsuyanagi, T. Ebisuzaki, T. Hatori, and T. Kato, Phys. Plasmas 9, 446 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  27. Y. Kazimura, J.-I. Sakai, and S. V. Bulanov, Fiz. Plazmy 27, 350 (2001) [Plasma Phys. Rep. 27, 330 (2001)].

    Google Scholar 

  28. F. Califano, F. Praudi, F. Pegoraro, and S. V. Bulanov, Phys. Rev. E 58, 7837 (1998).

    ADS  Google Scholar 

  29. F. Califano, F. Pegoraro, and S. V. Bulanov, Phys. Rev. Lett. 84, 3602 (2000).

    Article  ADS  Google Scholar 

  30. F. Califano, N. Attico, F. Pegoraro, et al., Phys. Rev. Lett. 86, 5293 (2001).

    Article  ADS  Google Scholar 

  31. O. Buneman, Proc. R. Soc. London, Ser. A 215, 346 (1952).

    ADS  MATH  MathSciNet  Google Scholar 

  32. A. V. Gordeev and S. V. Levchenko, Electromagn. Waves Electron. Syst. 3(2–3), 25 (1998).

    Google Scholar 

  33. A. V. Gordeev and T. V. Losseva, Fiz. Plazmy 26, 1030 (2000) [Plasma Phys. Rep. 26, 965 (2000)].

    Google Scholar 

  34. H. Alfven, Phys. Rev. 55, 425 (1939).

    ADS  MATH  Google Scholar 

  35. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

  36. I. E. Tamm, The Principles of Electricity Theory (GITTL, Moscow, 1976).

    Google Scholar 

  37. A. V. Gordeev, Fiz. Plazmy 27, 815 (2001) [Plasma Phys. Rep. 27, 769 (2001)].

    Google Scholar 

  38. V. I. Berezhiani, S. M. Mahajan, and N. L. Shatashvili, Phys. Rev. E 55, 995 (1997).

    Article  ADS  Google Scholar 

  39. V. P. Krainov, J. Phys. B 36, 3187 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  40. V. P. Krainov, Zh. Éksp. Teor. Fiz. 123, 487 (2003) [JETP 96, 430 (2003)].

    Google Scholar 

  41. A. V. Gordeev and S. V. Levchenko, in Proceedings of the 18th Symposium on Plasma Physics Technology, Prague, 1997, p. 74.

  42. M. Borghesi, A. J. Mackinnon, A. R. Bell, et al., Phys. Rev. Lett. 81, 112 (1998).

    ADS  Google Scholar 

  43. K. Krushelnick, A. Ting, C. I. Moore, et al., Phys. Rev. Lett. 78, 4047 (1997).

    Article  ADS  Google Scholar 

  44. E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996).

    Article  Google Scholar 

  45. V. S. Belyaev, O. F. Kostenko, and V. S. Lisitsa, Pis’ma Zh. Éksp. Teor. Fiz. 77, 784 (2003) [JETP Lett. 77, 653 (2003)].

    Google Scholar 

  46. D. Pesme, W. Rozmus, V. T. Tikhonchuk, et al., Phys. Rev. Lett. 84, 278 (2000).

    Article  ADS  Google Scholar 

  47. G. S. Sarkisov, V. Yu. Bychenkov, and V. T. Tikhonchuk, Pis’ma Zh. Éksp. Teor. Fiz. 69, 20 (1999) [JETP Lett. 69, 20 (1999)].

    Google Scholar 

  48. S. V. Bulanov, F. Kalifano, G. I. Dudnikova, et al., in Review of Plasma Physics, Ed. by V. D. Shafranov (Kluwer Academic, New York, 2001), Vol. 22, p. 227.

    Google Scholar 

  49. R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1960), Vol. 4.

    Google Scholar 

  50. A. V. Gordeev, Fiz. Plazmy 23, 108 (1997) [Plasma Phys. Rep. 23, 92 (1997)].

    Google Scholar 

  51. A. V. Gordeev, A. S. Kingsep, and L. I. Rudakov, Phys. Rep. 243, 215 (1994).

    Article  ADS  Google Scholar 

  52. R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.

    Google Scholar 

  53. V. V. Krasnosel’skikh, Zh. Éksp. Teor. Fiz. 89, 498 (1985) [Sov. Phys. JETP 62, 282 (1985)].

    ADS  Google Scholar 

  54. K. Krushelnick, E. L. Clark, Z. Najmudin, et al., Phys. Rev. Lett. 83, 737 (1999).

    Article  ADS  Google Scholar 

  55. C. W. Gear, Numerical Initial Value Problem in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1971).

    Google Scholar 

  56. E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flows (Elsevier, New York, 1987; Mir, Moscow, 1990).

    Google Scholar 

  57. A. V. Gordeev, Fiz. Plazmy 27, 700 (2001) [Plasma Phys. Rep. 27, 659 (2001)].

    Google Scholar 

  58. Y. Sentoku, T. V. Liseikina, T. Zh. Esirkepov, et al., Phys. Rev. E 62, 7271 (2000).

    Article  ADS  Google Scholar 

  59. A. V. Gordeev and T. V. Losseva, in Book of Abstracts of 10th International Conference and School on Plasma Physics and Controlled Fusion, Alushta, 2004, p. 102.

  60. P. M. Banks and G. Kockarts, Aeronomy (Academic, New York, 1973).

    Google Scholar 

  61. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoizdat, Moscow, 1991; CRC, Boca Raton, 1997).

    Google Scholar 

  62. T. Z. Esirkepov, Y. Sentoku, K. Mima, et al., Pis’ma Zh. Éksp. Teor. Fiz. 70, 80 (1999) [JETP Lett. 70, 82 (1999)].

    Google Scholar 

  63. G. S. Sarkisov, V. Yu. Bychenkov, V. N. Novikov, et al., Phys. Rev. E 59, 7042 (1999).

    Article  ADS  Google Scholar 

  64. G. Pretzler, A. Saeman, A. Pukhov, et al., Phys. Rev. E 58, 1165 (1998).

    Article  ADS  Google Scholar 

  65. J. Zweiback, R. A. Smith, T. E. Cowan, et al., Phys. Rev. Lett. 84, 2634 (2000).

    Article  ADS  Google Scholar 

  66. V. Yu. Bychenkov, V. T. Tikhonchuk, and S. V. Tolokonnikov, Zh. Éksp. Teor. Fiz. 115, 2080 (1999) [JETP 88, 1137 (1999)].

    Google Scholar 

  67. V. Yu. Bychenkov, Y. Sentoku, S. V. Bulanov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 74, 664 (2001) [JETP Lett. 74, 586 (2001)].

    Google Scholar 

  68. A. V. Gordeev and T. V. Losseva, in Proceedings of the 13th International Conference on High-Power Particle Beams, Nagaoka, 2000, Vol. II, p. 968.

  69. G. V. Sholin and E. O. Baronova, in Book of Abstracts of 1st All-Russia Seminar on Z-Pinches, Moscow, 2004, p. 40.

  70. Y. Kazimura, J.-I. Sakai, and S. V. Bulanov, J. Phys. Soc. Jpn. 68, 3271 (1999).

    Article  Google Scholar 

  71. M. Honda, J. Meyer-ter-Vehn, and A. M. Pukhov, Phys. Plasmas 7, 1302 (2000).

    ADS  Google Scholar 

  72. M. Honda, J. Meyer-ter-Vehn, and A. M. Pukhov, Phys. Rev. Lett. 85, 2128 (2000).

    Article  ADS  Google Scholar 

  73. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, et al., J. Quant. Spectrosc. Radiat. Transf. 71, 581 (2001).

    Article  ADS  Google Scholar 

  74. A. Maksimchuk, K. Flippo, H. Krause, et al., Fiz. Plazmy 30, 514 (2004) [Plasma Phys. Rep. 30, 473 (2004)].

    Google Scholar 

  75. U. Wagner, M. Tatarakis, A. Gopal, et al., Phys. Rev. E 70, 026401 (2004).

  76. A. A. Frolov, Fiz. Plazmy 30, 750 (2004) [Plasma Phys. Rep. 30, 698 (2004)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 31, No. 1, 2005, pp. 30–51.

Original Russian Text Copyright © 2005 by Gordeev, Losseva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordeev, A.V., Losseva, T.V. Localization of magnetized electrons in current filaments as a fundamental cause of Coulomb explosion. Plasma Phys. Rep. 31, 26–45 (2005). https://doi.org/10.1134/1.1856706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1856706

Keywords

Navigation