Skip to main content
Log in

Quantum gravity as Escher's Dragon

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D=4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N=4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N=1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N=4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. J. Isham, in Proc. of GIFT International Seminar on Theoretical Physics, Salamanca, 1992; gr-qc/9210011.

  2. R. Arnowitt, S. Deser, and C. Misner, Phys. Rev. 117, 1595 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Penrose, Riv. Nuovo Cimento 1, 252 (1969).

    Google Scholar 

  4. T. Harada, Prog. Theor. Phys. 107, 449 (2002).

    ADS  MATH  MathSciNet  Google Scholar 

  5. K. Gödel, Rev. Mod. Phys. 21, 447 (1949); C. W. Misner and A. H. Taub, Zh. Éksp. Teor. Fiz. 28, 233 (1969) [Sov. Phys. JETP 28, 122 (1969)]; M. Visser, Lorentzian Wormholes: from Einstein to Hawking (AIP, NewYork, 1995).

    Article  ADS  MATH  Google Scholar 

  6. A. Carlini and I. D. Novikov, Int. J. Phys. D 5, 445 (1996).

    ADS  MathSciNet  Google Scholar 

  7. S. Hawking, Commun. Math. Phys. 87, 395 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Wheeler, Relativity, Groups, and Topology, Ed. by C. DeWitt and B. DeWitt (Gordon and Breach, New York, 1964), p. 316; B. DeWitt, Phys. Rev. 160, 1113 (1967).

    Google Scholar 

  9. E. D'Hoker and D. H. Phong, Phys. Lett. B 529, 241 (2002); Nucl. Phys. B 636, 3, 61 (2002); 639, 129 (2002).

    ADS  MathSciNet  Google Scholar 

  10. G. S. Danilov, hep-th/0112022.

  11. E. S. Fradkin and A. A. Tseytlin, Phys. Rep. 119, 233 (1985), and references therein.

    Article  ADS  MathSciNet  Google Scholar 

  12. A. D. Sakharov, Dokl. Akad. Nauk SSSR 12 (11), 70 (1968) [Sov. Phys. Dokl. 12, 1040 (1968)].

    Google Scholar 

  13. A. V. Smilga, in Proc. of the Int. Symp. on Group Theoretical Methods in Physics, Zvenigorod, 1982, Vol. 2, p. 73.

  14. T. Eguchi and A. J. Hanson, Ann. Phys. (N.Y.) 120, 82 (1979).

    Article  MathSciNet  Google Scholar 

  15. A. V. Smilga, Nucl. Phys. B 234, 402 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  16. T. D. Lee and G. C. Wick, Nucl. Phys. B 9, 209 (1969); Phys. Rev. D 2, 1033 (1970).

    ADS  MathSciNet  Google Scholar 

  17. I. Antoniadis and E. T. Tomboulis, Phys. Rev. D 33, 2756 (1986).

    Article  ADS  Google Scholar 

  18. V. I. Ogievetsky and E. S. Sokatchev, Yad. Fiz. 31, 264 (1980) [Sov. J. Nucl. Phys. 31, 140 (1980)]; Yad. Fiz. 31, 821 (1980) [Sov. J. Nucl. Phys. 31, 424 (1980)]; Sov. J. Nucl. Phys. 32, 589 (1980); Sov. J. Nucl. Phys. 32, 870 (1980).

    Google Scholar 

  19. P. van Nieuwenhuizen, Phys. Rep. 68, 189 (1981), and references therein.

    ADS  MathSciNet  Google Scholar 

  20. V. Guillemin and A. Pollack, Differential Topology (Prentice Hall, Englewood Cliffs (NJ), 1974).

    Google Scholar 

  21. D. R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid (Basic Books, 1979).

  22. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 66, No. 11, 2003, pp. 2141–2151.

Original English Text Copyright © 2003 by Smilga.

This article was submitted by the author in English.

On leave of absence from ITEP, Moscow, Russia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smilga, A.V. Quantum gravity as Escher's Dragon. Phys. Atom. Nuclei 66, 2092–2102 (2003). https://doi.org/10.1134/1.1625752

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1625752

Keywords

Navigation