Skip to main content
Log in

Third-harmonic generation in an ionized gas and its relation to the residual energy of electrons

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The generation of low-order harmonics by a short ionizing laser pulse passing through a gas is investigated in regard to the space-time phase-synchronism conditions. This investigation is based on the results of hydrodynamic calculations for the model of [1] supplemented by taking into account the ionization current [2–5] and on the numerical solution of a one-dimensional time-dependent Schrödinger equation. As applied to the description of the third-harmonic spectrum, the hydrodynamic model with ionization current is shown to be in good agreement with a quantum-mechanical model. In this case, the amplitude of the third harmonic is determined by the intensity of the laser field at the moment of maximal ionization rate; this fact allows one to relate the amplitude of the third harmonic to the residual energy of electrons [5–8] and may provide grounds for the diagnosis of the residual energy by the spectrum of the third harmonic, which is important for the development of X-ray lasers based on ionization nonequilibrium plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Brunel, J. Opt. Soc. Am. B 7, 521 (1990).

    ADS  Google Scholar 

  2. N. E. Andreev, M. E. Veisman, M. G. Keidzhyan, and M. V. Chegotov, Fiz. Plazmy 26, 1010 (2000) [Plasma Phys. Rep. 26, 947 (2000)].

    Google Scholar 

  3. V. P. Kandidov, O. G. Kosareva, and S. A. Shlenov, Kvantovaya Élektron. (Moscow) 28, 971 (1994).

    Google Scholar 

  4. M. Geissler, G. Tempea, A. Scrinzi, et al., Phys. Rev. Lett. 83, 2930 (1999).

    Article  ADS  Google Scholar 

  5. V. B. Gildenburg, A. V. Kim, V. A. Krupnov, et al., IEEE Trans. Plasma Sci. 21, 34 (1993).

    Article  Google Scholar 

  6. N. E. Andreev, M. E. Veisman, C. P. Goreslavskii, and M. V. Chegotov, Fiz. Plazmy 27, 296 (2001) [Plasma Phys. Rep. 27, 278 (2001)]; N. E. Andreev, M. V. Chegotov, M. E. Veisman, et al., Proc. SPIE 3735, 234 (1998).

    Google Scholar 

  7. N. E. Andreev, M. V. Chegotov, M. E. Veisman, et al., Pis’ma Zh. Éksp. Teor. Fiz. 68, 566 (1998) [JETP Lett. 68, 592 (1998)].

    Google Scholar 

  8. P. Pulsifer, J. P. Apruzese, J. Davis, and P. Kepple, Phys. Rev. A 49, 3958 (1994).

    Article  ADS  Google Scholar 

  9. A. L’Huillier, L.-A. Lompre, G. Mainfray, and C. Manus, in Atoms in Intense Laser Fields, Ed. by M. Gavrila (Academic, New York, 1992), p. 139.

    Google Scholar 

  10. V. T. Platonenko and V. V. Strelkov, Kvantovaya Élektron. (Moscow) 25, 582 (1998).

    Google Scholar 

  11. A. M. Sergeev, A. V. Kim, E. V. Vanin, et al., Proc. SPIE 2770, 36 (1995).

    ADS  Google Scholar 

  12. P. Antoine, A. L’Huiller, and M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996).

    Article  ADS  Google Scholar 

  13. V. P. Silin, Kvantovaya Élektron. (Moscow) 26, 11 (1998).

    Google Scholar 

  14. K. N. Ovchinnikov and V. P. Silin, Kratk. Soobshch. Fiz., No. 10, 19 (1998).

  15. V. P. Silin, Zh. Éksp. Teor. Fiz. 117, 920 (2000) [JETP 90, 805 (2000)].

    Google Scholar 

  16. M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, et al., Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  17. P. B. Corcum, Phys. Rev. Lett. 71, 1994 (1993).

    ADS  Google Scholar 

  18. C. F. M. Fariade, M. Dorr, and W. Sander, Phys. Rev. A 58, 2990 (1998).

    ADS  Google Scholar 

  19. N. Aközbek, A. Iwasaki, A. Becker, et al., Phys. Rev. Lett. 89, 143901 (2002).

  20. J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. A 45, 4998 (1992).

    Article  ADS  Google Scholar 

  21. L. Roso-Franko, A. Sanpera, M. L. Pons, and L. Plaja, Phys. Rev. A 44, 4652 (1991).

    ADS  Google Scholar 

  22. A. M. Ermolaev and A. V. Selin, Phys. Rev. A 62, 015401 (2000).

    Google Scholar 

  23. S. Blanes and P. C. Moan, Phys. Lett. A 265, 35 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. H. Eberly, Q. Su, and J. Javanainen, Izv. Akad. Nauk SSSR, Ser. Fiz. 53, 1101 (1989).

    Google Scholar 

  25. E. V. Vanin, M. S. Dauner, A. V. Kim, and A. M. Sergeev, Pis’ma Zh. Éksp. Teor. Fiz. 58, 964 (1993) [JETP Lett. 58, 900 (1993)].

    Google Scholar 

  26. W. Becker, S. Long, and J. K. McIver, Phys. Rev. A 50, 1540 (1994).

    ADS  Google Scholar 

  27. L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1964)].

    Google Scholar 

  28. M. V. Chegotov, Fiz. Plazmy (Moscow) 26, 940 (2000) [Plasma Phys. Rep. 26, 881 (2000)].

    Google Scholar 

  29. M. V. Ammosov, N. V. Delone, and V. P. Krainov, Zh. Éksp. Teor. Fiz. 91, 2008 (1986) [Sov. Phys. JETP 64, 1191 (1986)].

    Google Scholar 

  30. P. Mulser, F. Cornolti, and D. Bauer, Phys. Plasmas 5, 4466 (1998).

    Article  ADS  Google Scholar 

  31. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Zh. Éksp. Teor. Fiz. 50, 1393 (1966) [Sov. Phys. JETP 23, 924 (1966)].

    Google Scholar 

  32. N. E. Andreev and M. V. Chegotov, in Abstracts of XXVII Zvenigorod Conference on Plasma Physics and UTS (Zvenigorod, 2000), p. 119.

  33. I. P. Christov, J. Zhou, J. Peatross, et al., Phys. Rev. Lett. 77, 1743 (1996).

    Article  ADS  Google Scholar 

  34. N. B. Delone and V. P. Krainov, Tr. Inst. Obshch. Fiz. Ross. Akad. Nauk 50, 34 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 124, No. 3, 2003, pp. 612–624.

Original Russian Text Copyright © 2003 by Andreev, Veisman, Chegotov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, N.E., Veisman, M.E. & Chegotov, M.V. Third-harmonic generation in an ionized gas and its relation to the residual energy of electrons. J. Exp. Theor. Phys. 97, 554–565 (2003). https://doi.org/10.1134/1.1618340

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1618340

Keywords

Navigation