Skip to main content
Log in

Gamma-ray bursts—tracers of the history of star formation in the Universe

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The rate of gamma-ray bursts (GRBs) in the Galaxy is estimated assuming that these events result from the formation of rapidly rotating Kerr black holes during the core collapse of massive, helium, Wolf-Rayet secondary components in very close binary systems. This process brings about rapid rotation of the cores of such Wolf-Rayet stars, inevitably resulting in the formation of Kerr black holes during type Ib,c supernovae. The current rate of formation of Kerr black holes (GRBs) in the Galaxy is about 3×10−5/year. Collimation of the gamma-ray radiation into a small solid angle (about 0.1–0.01 sr) brings this rate into consistency with the observed rate of GRBs, estimated to be 10−6–10−7/year. Possible immediate progenitors of GRBs are massive X-ray binaries with X-ray luminosities of 1038–1040 erg/s. Due to the short lifetimes of the progenitors and the very high brightnesses of GRBs, the GRB rate can provide information about the history of star formation in the Universe on the Hubble time scale. A model in which the star-formation rate is determined by the conditions for ionization of the interstellar gas, whose density and volume are determined by supernovae, yields a Galactic star-formation history that can be viewed as representing the history of star formation in the Universe. The theoretical history of star formation is in satisfactory agreement with the history reconstructed from observations. The theoretical model for the history of star formation in the Galaxy can also be used to assess the influence of dust on optical observations of supernovae and GRBs in galaxies of various ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Djorgovski, S. R. Kulkarni, D. A. Frail, et al., astro-ph/0301342.

  2. S. Dado, A. Dar, and A. DeRujula, Astron. Astrophys. 393, L25 (2002).

    Article  ADS  Google Scholar 

  3. K. Hurley, R. Sari, and S. Djorgovski, astro-ph/0211620.

  4. J. Bloom, S. Kulkarni, and S. Djorgovski, Astron. J. 123, 1111 (2002).

    Article  ADS  Google Scholar 

  5. J. Reeves, D. Watson, J. P. Osborne, et al., astro-ph/0206480.

  6. S. Mao and B. Paczynski, Astrophys. J. Lett. 388, L45 (1990).

    ADS  Google Scholar 

  7. B. Paczynski, Astrophys. J. Lett. 494, L45 (1998).

    ADS  Google Scholar 

  8. A. Tutukov and L. Yungel'son, Astron. Zh. 79, 738 (2002) [Astron. Rep. 46, 667 (2002)].

    Google Scholar 

  9. D. Frail, S. R. Kulkarni, R. Sari, et al., Astrophys. J. Lett. 562, L55 (2001).

    Article  ADS  Google Scholar 

  10. D. Lamb, astro-ph/0210433; astro-ph/0210434.

  11. E. Gögüs, P. M. Woods, C. Kouveliotou, et al., Astrophys. J. Lett. 526, L93 (1999).

    ADS  Google Scholar 

  12. B. Stern, J. Atteia, and K. Hurley, Astrophys. J. 578, 304 (2002).

    Article  ADS  Google Scholar 

  13. M. Kudryavtsev, S. I. Svertilov, O. V. Morozov, et al., Pis'ma Astron. Zh. 28, 331 (2002) [Astron. Lett. 28, 287 (2002)].

    Google Scholar 

  14. P. Price, E. Berger, S. R. Kulkarni, et al., Astrophys. J. 573, 85 (2002).

    Article  ADS  Google Scholar 

  15. S. Yost, D. Frail, and F. Harrison, Astrophys. J. 577, 155 (2002).

    Article  ADS  Google Scholar 

  16. M. Schmidt, Astrophys. J. 559, L79 (2001).

    Article  ADS  Google Scholar 

  17. E. Berger and S. Kulkarni, astro-ph/0301268.

  18. H. Pedersen, J.-L. Atteia, M. Boer, et al., Messenger No. 100, 32 (2000).

  19. S. Anderson, J.-C. Cuileandre, and R. Pello, astro-ph/0009431.

  20. C. Firmani and A. Tutukov, Astron. Astrophys. 264, 37 (1992).

    ADS  Google Scholar 

  21. D. Wiebe, A. Tutukov, and B. Shustov, Astron. Zh. 75, 3 (1998) [Astron. Rep. 42, 1 (1998)].

    Google Scholar 

  22. J. Gallagher, D. Hunter, and A. Tutukov, Astrophys. J. 284, 544 (1984).

    Article  ADS  Google Scholar 

  23. E. Berger, L. L. Cowie, S. R. Kulkarni, et al., astro-ph/0210645.

  24. D. Frail, F. Bertoldi, G. H. Moriarty-Schieven, et al., Astrophys. J. 565, 829 (2002).

    Article  ADS  Google Scholar 

  25. A. Tutukov and A. M. Cherepashchuk, Astron. Zh. 80, 419 (2003).

    Google Scholar 

  26. G. Bisnovatyi-Kogan, Astrophys. Space Sci. 276, 259 (2001).

    Article  ADS  MATH  Google Scholar 

  27. M. Botcher and C. Dermer, Astrophys. J. 529, 635 (2000).

    ADS  Google Scholar 

  28. S. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Sov. Astron. Lett. 10, 177 (1984).

    ADS  Google Scholar 

  29. B. Paczynski, Astrophys. J. Lett. 308, L43 (1986).

    Article  ADS  Google Scholar 

  30. A. Tutukov and L. Yungelson, Mon. Not. R. Astron. Soc. 260, 675 (1993).

    ADS  Google Scholar 

  31. V. Kalogera, C. Kim, and D. R. Lorimer, astro-ph/0212048.

  32. A. Faulkner, M. Kramer, G. Hobbs, et al., astro-ph/0301349.

  33. A. Tutukov and A. Fedorova, Astron. Zh. (2003, in press).

  34. S. Yost, D. A. Frail, F. A. Harrison, et al., Astrophys. J. 577, 155 (2002).

    Article  ADS  Google Scholar 

  35. K. Postnov and A. Cherepashchuk, Astron. Zh. 78, 602 (2001) [Astron. Rep. 45, 517 (2001)].

    Google Scholar 

  36. S. McGreen et al., astro-ph/0206298.

  37. A. Tutukov and A. Cherepashchuk, Astron. Zh. (2003, in press).

  38. T. Le Floch, P.-A. Duc, I. F. Mirabel, astro-ph/0211252.

  39. J. Bloom, S. R. Kulkarni, P. A. Price, et al., Astrophys. J. Lett. 572, L45 (2002).

    Article  ADS  Google Scholar 

  40. B. Schaefer, C. L. Gerardy, P. Hoflich, et al., astro-ph/0211189.

  41. A. Tutukov and A. Cherepashchuk, Astron. Zh. 62, 1124 (1985) [Sov. Astron. 29, 654 (1985)].

    ADS  Google Scholar 

  42. A. Tutukov and N. Chugai, Pis'ma Astron. Zh. 18, 606 (1992) [Sov. Astron. Lett. 18, 242 (1992)].

    ADS  Google Scholar 

  43. W. Zhang, S. E. Woosley, A. I. MacFadyen, astro-ph/0207436.

  44. A. Heger and S. E. Woosley, astro-ph/0206005.

  45. A. Tutukov, Nauchn. Inf. 11, 27 (1969).

    Google Scholar 

  46. S. Kawaler, astro-ph/0301539.

  47. A. Tutukov and L. Yungelson, Nauchn. Inf. 27, 57 (1973).

    Google Scholar 

  48. C. Fryer, A. Heger, N. Langer, and S. Wellstein, astro-ph/0112539.

  49. E. Popova, A. V. Tutukov, and L. R. Yungelson, Astrophys. Space Sci. 55, 55 (1982).

    ADS  Google Scholar 

  50. R. Humphreys, Astrophys. J., Suppl. Ser. 29, 389 (1975).

    Google Scholar 

  51. J. Scalo and J. Wheeler, Astrophys. J. 566, 723 (2002).

    Article  ADS  Google Scholar 

  52. H. Grimm, M. Gilfanov, R. Sunyaev, astro-ph/0205371.

  53. P. Ranalli, A. Comastri, G. Setti, astro-ph/0211304.

  54. M. Gilfanov, H.-J. Grimm, R. Sunyaev, astro-ph/0301331.

  55. R. Stothers, Astrophys. J. 568, 312 (2002).

    Article  ADS  Google Scholar 

  56. A. Tutukov and L. Yungelson, Astrofizika 12, 576 (1976).

    Google Scholar 

  57. J. Brodie and J. Huchra, Astrophys. J. 379, 157 (1991).

    Article  ADS  Google Scholar 

  58. K. Nagamine, M. Fukugita, R. Cen, and J. P. Ostriker, Astrophys. J. 558, 497 (2001).

    Article  ADS  Google Scholar 

  59. R. Kudritzki and J. Puls, Annu. Rev. Astron. Astrophys. 38, 613 (2000).

    Article  ADS  Google Scholar 

  60. I. Iben, Jr., A. V. Tutukov, and A. V. Fedorova, Astrophys. J. 486, 955 (1997).

    ADS  Google Scholar 

  61. B. Stern, J.-L. Atteia, and K. Hurley, astro-ph/0202181.

  62. T. Donaghy, D. Q. Lamb, D. E. Reichart, and C. Graziani, astro-ph/0210436.

  63. N. Trentham and R. Tully, Mon. Not. R. Astron. Soc. 335, 712 (2002).

    Article  ADS  Google Scholar 

  64. A. Tutukov, Astron. Astrophys. Trans. 21, 137 (2002).

    ADS  Google Scholar 

  65. S. Djorgovski, S. R. Kulkarni, D. A. Frail, et al., astro-ph/0302004.

  66. A. Kostyunin, Astron. Zh. 72, 811 (1995) [Astron. Rep. 39, 722 (1995)].

    ADS  Google Scholar 

  67. B. Schustov, D. Wiebe, and A. Tutukov, Astron. Astrophys. 317, 397 (1997).

    ADS  Google Scholar 

  68. J. Norris, Astrophys. J. 579, 386 (2002).

    Article  ADS  Google Scholar 

  69. B. Stern, J.-L. Atteia, and K. Hurley, Astrophys. J. 578, 304 (2002).

    Article  ADS  Google Scholar 

  70. G. A. Telis et al., Astrophys. J. 585, 312 (2003).

    Google Scholar 

  71. I. Smail, F. N. Owen, G. E. Morrison, et al., Astrophys. J. 581, 844 (2002).

    Article  ADS  Google Scholar 

  72. J. Afonso, B. Mobasher, B. Chan, and L. Cram, Astrophys. J. 559, L101 (2001).

    Article  ADS  Google Scholar 

  73. V. Vijh, A. N. Witt, and K. D. Gordon, astro-ph/0301121.

  74. A. DiPaola, V. Larionov, A. Arkharov, et al., Astron. Astrophys. 393, L21 (2002).

    ADS  Google Scholar 

  75. E. Berger, L. L. Cowie, S. R. Kulkarni, et al., astro-ph/0210645.

  76. G. Kaufmann, T. M. Heckman, S. D. M. White, et al., astro-ph/0204055.

  77. M. Sullivan, R. S. Ellis, G. Aldering, et al., astro-ph/0211444.

  78. E. Le Floch, P.-A. Duc, I. F. Mirabel, et al., astro-ph/0301149.

  79. J. Gorasabel, L. Christensen, J. Hjorth, et al., astro-ph/0212334.

  80. D. Lamb, astro-ph/0210433.

  81. I. V. Igumenshchev, A. V. Tutukov, B. M. Shustov, Astron. Astrophys. 234, 396 (1990).

    ADS  Google Scholar 

  82. S. Sabatine, J. Davies, R. Scaramella, et al., astro-ph/0301585.

  83. A. Panaitesau and P. Kumar, astro-ph/0301032.

  84. G. Bisnovatyi-Kogan, Astron. Zh. 47, 813 (1970) [Sov. Astron. 14, 652 (1970)].

    ADS  Google Scholar 

  85. A. Koenigl, astro-ph/0302110.

  86. M. Sawicki, H. Lin, and H. K. C. Yee, Astron. J. 113, 1 (1997).

    Article  ADS  Google Scholar 

  87. P. Madau, H. C. Ferguson, M. E. Dickinson, et al., Mon. Not. R. Astron. Soc. 283, 1388 (1997).

    ADS  Google Scholar 

  88. M. Schmidt, Astrophys. J. Lett. 559, L79 (2001).

    Article  ADS  Google Scholar 

  89. G. Wilson, I. Smail, R. S. Ellis, and W. J. Couch, Mon. Not. R. Astron. Soc. 284, 915 (1997).

    ADS  Google Scholar 

  90. S. Holt, E. M. Schlegel, U. Hwang, and R. Petre, astro-ph/0301319.

  91. A. Kaspi, W. N. Brandt, and D. P. Schneider, astro-ph/0001299.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 80, No. 8, 2003, pp. 692–703.

Original Russian Text Copyright © 2003 by Tutukov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutukov, A.V. Gamma-ray bursts—tracers of the history of star formation in the Universe. Astron. Rep. 47, 637–647 (2003). https://doi.org/10.1134/1.1601632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1601632

Keywords

Navigation