Skip to main content
Log in

Shear flow of a nematic liquid crystal near a charged surface

  • Polymers and Liquid Crystals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The maximum alignment angle θeff and the effective rotational viscosity coefficient γ effi of polar liquid crystals, such as 4-n-octyloxy-4′-cyanobiphenyl (8OCB), are investigated in the vicinity of charged bounding surfaces. The quantities θeff and γ eff1 are calculated in the framework of the Ericksen-Leslie theory. The results of calculations demonstrate that, for a homeotropic alignment of molecules on charged indium tin oxide surfaces, the effective rotational viscosity coefficient γ effi can increase by 7.8% as compared to the bulk rotational viscosity coefficient γ1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1960).

    MATH  MathSciNet  Google Scholar 

  2. F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).

    Article  MATH  Google Scholar 

  3. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Univ. Press, Oxford, 1995; Mir, Moscow, 1982), p. 360.

    Google Scholar 

  4. A. V. Zakharov, Phys. Rev. E 51, 5880 (1995).

    Article  ADS  Google Scholar 

  5. J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic, London, 1992).

    Google Scholar 

  6. A. V. Zakharov and R. Y. Dong, J. Chem. Phys. 116, 6348 (2002).

    Article  ADS  Google Scholar 

  7. V. F. Zaitsev and A. D. Polyanin, A Handbook on Ordinary Differential Equations (Fiz.-Mat. Lit., Moscow, 2001), p. 576.

    Google Scholar 

  8. N. Kuzuu and M. Doi, J. Phys. Soc. Jpn. 52, 3486 (1983).

    Article  Google Scholar 

  9. S. A. Rozanski, R. Stunnarius, H. Groothues, and F. Kremer, Liq. Cryst. 20, 59 (1996).

    Google Scholar 

  10. A. V. Zakharov and R. Dong, Phys. Rev. E 63, 011704 (2001).

    Google Scholar 

  11. A. V. Zakharov and R. Dong, Eur. Phys. J. E 7, 267 (2002).

    Article  Google Scholar 

  12. S. Ponti, P. Ziherl, C. Ferrero, and S. Zumer, Liq. Cryst. 26, 1171 (1999).

    Google Scholar 

  13. R. N. Thurston, J. Cheng, R. B. Meyer, and G. D. Boyd, J. Appl. Phys. 56, 263 (1984).

    Article  ADS  Google Scholar 

  14. S. Ponti, P. Ziherl, C. Ferrero, and S. Zumer, Liq. Cryst. 26, 1171 (1999).

    Google Scholar 

  15. A. G. Chmielewski, Mol. Cryst. Liq. Cryst. 132, 319 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 6, 2003, pp. 1135–1140.

Original Russian Text Copyright © 2003 by Zakharov, Vakulenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, A.V., Vakulenko, A.A. Shear flow of a nematic liquid crystal near a charged surface. Phys. Solid State 45, 1191–1196 (2003). https://doi.org/10.1134/1.1583813

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1583813

Keywords

Navigation