Skip to main content
Log in

Symmetric heat and mass transfer in a rotating spherical layer

  • Gravitation, Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The general theory of heat and mass transfer maintaining rotation with slightly different velocities under conditions typical for cores of planets in the solar system is developed for the first time. The analytic solution is obtained for thermal and diffusion equations without nonlinear terms responsible for the convective transfer. This spherically symmetric basic solution is applicable when the thermal flux from a planet core is weaker than or comparable to the adiabatic (radiative) flux. In the general case, by subtracting the basic solution, we simplified the inhomogeneous system of convective equations to obtain a completely homogeneous and dimensionless system. The latter system is controlled by two asymptotically small parameters: the Rossby number ε<10−5, which characterizes the relative value of differential rotation, and the generalized Eckman number E<10−12, which characterizes the relative role of viscosity-diffusion effects during rapid rotation. The principal order of the solution for ε →0 and then for \(\sqrt E \to 0\), for the transfer coefficients close to molecular coefficients, results in the basic flow, which is symmetric with respect to the rotation axis and directed predominantly along the azimuth. The basic-flow liquid ascends from a solid core along spirals inside an axial cylinder in contact with the equator of the solid core and descends in a narrow layer along the cylinder walls. The moment of viscous forces in the inner boundary Eckman layer provides a faster rotation of the inner solid core of terrestrial planets compared to a massive outer mantle due to the growth of the solid core at the expense of a low-density liquid core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Glatzmaier and P. H. Roberts, Phys. Earth Planet. Inter. 91, 63 (1995).

    Article  Google Scholar 

  2. G. A. Glatzmaier and P. H. Roberts, Contemp. Phys. 38, 269 (1997).

    ADS  Google Scholar 

  3. S. I. Braginsky and P. H. Roberts, Geophys. Astrophys. Fluid Dyn. 79, 1 (1995).

    Google Scholar 

  4. P. H. Roberts, C. A. Jones, and A. R. Calderwood, in Earth’s Core and Lower Mantle, Ed. by C. A. Jones, A. M. Soward, and K. Zhang (Gordon and Breach, London, 2001).

    Google Scholar 

  5. S. V. Starchenko and C. A. Jones, submitted to Icarus (2002).

  6. S. V. Starchenko, Zh. Éksp. Teor. Fiz. 115, 1708 (1999) [JETP 88, 936 (1999)]; S. V. Starchenko, NATO Sci. Ser., Ser. II: Math., Phys. Chem. 26, 217 (2001).

    Google Scholar 

  7. S. V. Starchenko, Phys. Earth Planet. Inter. 117, 225 (2000).

    Article  ADS  Google Scholar 

  8. G. A. Glatzmaier and P. H. Roberts, Physica D (Amsterdam) 97, 81 (1996).

    Google Scholar 

  9. J. R. Lister and B. A. Buffett, Phys. Earth Planet. Inter. 91, 17 (1995).

    Article  Google Scholar 

  10. A. M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Inter. 25, 97 (1981).

    Article  Google Scholar 

  11. F. H. Busse, J. Fluid Mech. 44, 441 (1970).

    ADS  MATH  Google Scholar 

  12. I. Proudman, J. Fluid Mech. 1, 505 (1956).

    ADS  MATH  MathSciNet  Google Scholar 

  13. L. V. Nikitina and A. A. Ruzmaikin, Geomagn. Aéron. 30, 127 (1990).

    Google Scholar 

  14. K. Stewartson, J. Fluid Mech. 3, 299 (1957).

    MathSciNet  Google Scholar 

  15. K. Stewartson, J. Fluid Mech. 26, 131 (1966).

    ADS  MATH  Google Scholar 

  16. S. V. Starchenko, Zh. Éksp. Teor. Fiz. 112, 2056 (1997) [JETP 85, 1125 (1997)].

    Google Scholar 

  17. G. A. Wijs et al., Nature 392, 805 (1998).

    Google Scholar 

  18. A. A. Ruzmaikin and S. V. Starchenko, Icarus 93, 82 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 121, No. 3, 2002, pp. 538–550.

Original Russian Text Copyright © 2002 by Starchenko, Kotel’nikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starchenko, S.V., Kotel’nikova, M.S. Symmetric heat and mass transfer in a rotating spherical layer. J. Exp. Theor. Phys. 94, 459–469 (2002). https://doi.org/10.1134/1.1469144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1469144

Keywords

Navigation