Skip to main content
Log in

Self-consistent model of a pulsed air discharge excited by surface waves

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A complete self-consistent electrodynamic model of a pulsed gas discharge excited by surface waves is developed. The model allows one to calculate both the initial phase of the discharge front propagation and the parameters of the produced plasma. The spatiotemporal evolution of the electromagnetic field and plasma parameters at the discharge front is investigated for the first time. It is shown that discharge propagation is mainly governed by a breakdown wave in an inhomogeneous electric field at the leading edge of the ionization front. It is found that the effect of the electric field enhancement in the plasma resonance region significantly affects the velocity of the breakdown wave. The results of calculations agree well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Moisan, C. M. Ferreira, Y. Hajlaoui, et al., Rev. Phys. Appl. 17, 707 (1982).

    Google Scholar 

  2. M. Moisan and Z. Zakrzewski, J. Phys. D 24, 1025 (1991).

    Article  ADS  Google Scholar 

  3. M. Moisan, Z. Zakrzewski, R. Pantel, and P. Leprince, IEEE Trans. Plasma Sci. 12 (3), 203 (1984).

    Google Scholar 

  4. C. F. M. Borges, L. St-Onge, M. Moisan, and A. Gicquel, Thin Solid Films 274, 3 (1996).

    Article  Google Scholar 

  5. C. M. Ferreira and M. Moisan, in Proceedings of NATO Advanced Research Workshop “Microwave Discharges: Fundamentals and Applications,” Sozopol, Bulgaria, 1998 (Plenum, New York, 1998).

    Google Scholar 

  6. I. Zhelyazkov and V. Atanassov, Phys. Rep. 255, 79 (1995).

    Article  ADS  Google Scholar 

  7. C. M. Ferreira and M. Moisan, Phys. Scr. 38, 382 (1988).

    ADS  Google Scholar 

  8. E. Bloet, P. Leprince, M. Llamas Blasco, and J. Marec, Phys. Lett. 83A, 391 (1981).

    ADS  Google Scholar 

  9. M. Llamas, V. Colomer, and M. Rodríguez-Vidal, J. Phys. D 18, 2169 (1985).

    Article  ADS  Google Scholar 

  10. A. Gamero, J. Cotrino, A. Sola, and V. Colomer, J. Phys. D 21, 1275 (1988).

    Article  ADS  Google Scholar 

  11. A. Gamero, A. Sola, J. Cotrino, and V. Colomer, J. Appl. Phys. 65, 2199 (1989).

    Article  ADS  Google Scholar 

  12. A. Bohle, O. Ivanov, A. Kolisko, et al., J. Phys. D 29, 369 (1996).

    ADS  Google Scholar 

  13. D. Grozev, K. Kirov, K. Makasheva, and A. Shivarova, IEEE Trans. Plasma Sci. 25, 415 (1997).

    Article  Google Scholar 

  14. D. Grozev, K. Kirov, and A. Shivarova, J. Phys. IV 8, 307 (1998).

    Google Scholar 

  15. O. A. Ivanov, A. M. Gorbachev, V. A. Koldanov, et al., J. Phys. IV 8, 317 (1998).

    Google Scholar 

  16. A. L. Vikharev, O. A. Ivanov, and A. L. Kolysko, Pis’ma Zh. Tekh. Fiz. 22 (20), 28 (1996) [Tech. Phys. Lett. 22, 832 (1996)].

    Google Scholar 

  17. Yu. M. Aliev, I. Ghanashev, H. Schluter, and A. Shivarova, Plasma Sources Sci. Technol. 3, 216 (1994).

    Article  ADS  Google Scholar 

  18. K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).

    Google Scholar 

  19. W. Tan and T. A. Grotjohn, J. Vac. Sci. Technol. A 12, 1216 (1994).

    Article  ADS  Google Scholar 

  20. D. V. Vinogradov and G. G. Denisov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 33 (6), 726 (1990).

    Google Scholar 

  21. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  22. A. L. Vikharev, V. B. Gil’denburg, O. A. Ivanov, et al., Fiz. Plazmy 12, 1503 (1986) [Sov. J. Plasma Phys. 12, 870 (1986)].

    Google Scholar 

  23. S. Grosse, in Advanced Technologies Based on Wave and Beam Generated Plasmas, Ed. by H. Schluter and A. Shivarova (Kluwer, Dordrecht, 1999) [NATO Sci. Ser. High Technol. 67, 517 (1999)].

    Google Scholar 

  24. O. A. Ivanov and V. A. Koldanov, in Advanced Technologies Based on Wave and Beam Generated Plasmas, Ed. by H. Schluter and A. Shivarova (Kluwer, Dordrecht, 1999) [NATO Sci. Ser. High Technol. 67, 511 (1999)].

    Google Scholar 

  25. V. E. Semenov, Fiz. Plazmy 8, 613 (1982) [Sov. J. Plasma Phys. 8, 347 (1982)].

    Google Scholar 

  26. A. L. Vikharev, O. A. Ivanov, and A. N. Stepanov, Fiz. Plazmy 14, 53 (1988) [Sov. J. Plasma Phys. 14, 32 (1988)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 26, No. 10, 2000, pp. 961–968.

Original Russian Text Copyright © 2000 by Ivanov, Koldanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, O.A., Koldanov, V.A. Self-consistent model of a pulsed air discharge excited by surface waves. Plasma Phys. Rep. 26, 902–908 (2000). https://doi.org/10.1134/1.1316831

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1316831

Keywords

Navigation