Skip to main content
Log in

Effect of continuous current during pauses between successive strokes on the decay of the lightning channel

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A one-dimensional model is used to study the dynamics of the hydrodynamic parameters of the lightning channel in the return stroke and after the pulse current is damped. The effect of the continuous residual electric current during pauses between the successive strokes on the plasma cooling in the channel is analyzed. It is shown that a continuous electric current, which is several orders of magnitude lower than the peak current in the return stroke, is capable of maintaining the channel conductivity. This effect cannot be explained merely by Joule heating but is largely governed by the fact that the turbulent heat transport is substantially suppressed. In this case, even a continuous current as low as 50–100 A is capable of maintaining the conductivity of the lightning channel at a level at which only M-components can develop in the channel rather than the dart leader of the subsequent stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. A. Uman, The Lightning Discharge (Academic, New York, 1987).

    Google Scholar 

  2. H. Jurenka and E. Barreto, J. Geophys. Res. D 90, 6219 (1985).

    ADS  Google Scholar 

  3. J. E. Borovsky, J. Geophys. Res. D 100, 2697 (1995).

    Article  ADS  Google Scholar 

  4. É. M. Bazelyan, Fiz. Plazmy 21, 497 (1995) [Plasma Phys. Rep. 21, 470 (1995)].

    ADS  Google Scholar 

  5. V. Cooray, J. Atmos. Electr. 16, 145 (1996).

    Google Scholar 

  6. V. Rakov, J. Geophys. Res. D 103, 1879 (1998).

    ADS  Google Scholar 

  7. M. N. Shneider, Paper No. 2000–0721 (AIAA, Reno, NY, 2000).

  8. M. N. Plooster, Phys. Fluids 13, 2665 (1970); 14, 2111 (1970).

    Article  Google Scholar 

  9. A. H. Paxton, R. L. Gardner, and L. Baker, Phys. Fluids 29, 2736 (1986).

    Article  ADS  Google Scholar 

  10. M. Akram, J. Phys. D 29, 2137 (1996).

    ADS  Google Scholar 

  11. B. N. Chetverushkin, Numerical Simulations of the Problems of Dynamics of a Radiative Gas (Nauka, Moscow, 1985).

    Google Scholar 

  12. I. V. Avilova, L. M. Biberman, V. S. Vorob’ev, et al., Optical Properties of Hot Air (Nauka, Moscow, 1970).

    Google Scholar 

  13. M. A. El’yashevich, G. S. Romanov, and Yu. S. Stankevich, in Proceedings of IV All-Union Conference “Dynamics of Radiative Gas” (Mosk. Gos. Univ., Moscow, 1981), p. 90.

    Google Scholar 

  14. S. I. Ananin and T. A. Lepshei, Preprint No. 325 Inst. Fiz. AN BSSR (Inst. of Physics, Academy of Science of BSSR, Minsk, 1984).

  15. Yu. K. Bobrov, V. V. Vikhrev, and I. N. Fedotov, Fiz. Plazmy 14, 1222 (1988) [Sov. J. Plasma Phys. 14, 715 (1988)].

    Google Scholar 

  16. N. M. Kuznetsov, Thermodynamic Functions and Shock Adiabats of Air at High Temperatures (Mashinostroenie, Moscow, 1965).

    Google Scholar 

  17. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967).

    Google Scholar 

  18. F. A. Baum, K. P. Stanyukovich, and B. I. Shikhter, Physics of Explosion (Gos. Izd. Fiz. Mat. Lit., Moscow, 1959).

    Google Scholar 

  19. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  20. G. Taylor, Proc. R. Soc. London, Ser. A 201, 192 (1950).

    ADS  MATH  Google Scholar 

  21. J. P. Greig, R. E. Pechacek, and M. Releigh, Phys. Fluids 28, 2357 (1985).

    Article  ADS  Google Scholar 

  22. J. M. Picone, J. P. Boris, J. P. Greig, et al., J. Atmos. Sci. 38, 2056 (1981).

    Article  ADS  Google Scholar 

  23. M. N. Shneider, Teplofiz. Vys. Temp. 31, 406 (1993); 32, 57 (1994); Paper No. 95–1994 (AIAA, San Diego, CA, 1995).

    Google Scholar 

  24. M. N. Shneider, Zh. Tekh. Fiz. 68 (2), 30 (1998) [Tech. Phys. 43, 159 (1998)]; Paper No. 97–2360 (AIAA, Atlanta, GA, 1997).

    Google Scholar 

  25. V. A. Rakov, R. Thottappillil, M. A. Uman, et al., J. Geophys. Res. D 100, 25701 (1995).

    Google Scholar 

  26. R. J. Fisher, G. H. Schnetzer, R. Thottappillil, et al., J. Geophys. Res. D 98, 22887 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 26, No. 10, 2000, pp. 952–960.

Original Russian Text Copyright © 2000 by Aleksandrov, Bazelyan, Shneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, N.L., Bazelyan, É.M. & Shneider, M.N. Effect of continuous current during pauses between successive strokes on the decay of the lightning channel. Plasma Phys. Rep. 26, 893–901 (2000). https://doi.org/10.1134/1.1316830

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1316830

Keywords

Navigation