Skip to main content
Log in

Electrostatic model of the energy gap between Hubbard bands for boron atoms in silicon

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Electrostatics is used to model the narrowing of the energy gap ɛ 2 between Hubbard bands (the A 0-and A +-bands) in a p-doped semiconductor with increasing acceptor concentration N + N 0 + N -1 + N +1 and with increasing degree of compensation K by donors for N −1KN. The screening of impurity ions by holes hopping from acceptor to acceptor is taken into account. It is shown that this effect leads to a shift of the A 0-band towards the valence band and the A +-band towards the conduction band. The concentration of holes hopping in the A +-band N +1 N 0/N is determined by the energy of their thermal generation ɛ 2 from the A 0-band. The values of ɛ 2 calculated for Si: B are in agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. M. Gershenzon, A. P. Mel’nikov, R. I. Rabinovich, and N. A. Serebryakova, Usp. Fiz. Nauk 132, 353 (1980) [Sov. Phys. Usp. 132, 153 (1980)].

    Google Scholar 

  2. H. Nushimura, Phys. Rev. 138, A815 (1965).

    ADS  Google Scholar 

  3. L. P. Ginzburg, Fiz. Tekh. Poluprovodn. 12, 564 (1978) [Sov. Phys. Semicond. 12, 326 (1978)].

    Google Scholar 

  4. E. M. Gershenzon, F. M. Ismagilova, and L. B. Litvak-Gorskaya, Fiz. Tekh. Poluprovodn. 28, 671 (1994) [Semiconductors 28, 401 (1994)].

    Google Scholar 

  5. J. Bethin, T. G. Castner, and N. K. Lee, Solid State Commun. 14, 1321 (1974).

    Article  Google Scholar 

  6. Semiconductors: Group IV Elements and III–V Compounds, edited by O. Madelung (Springer-Verlag, Berlin-Heidelberg, 1991), p. 164.

    Google Scholar 

  7. T. M. Lifshits, Instrum. Exp. Tech., No. 1 10 (1993).

  8. D. E. Phelps and K. K. Bajaj, Phys. Rev. B 26, 912 (1982).

    Article  ADS  Google Scholar 

  9. N. A. Poklonski, V. F. Stelmakh, V. D. Tkachev, and S. V. Voitikov, Phys. Status Solidi B 88, K165 (1978).

    Google Scholar 

  10. V. S. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics [in Russian], Nauka, Moscow (1990), ch. 5, p. 189.

    Google Scholar 

  11. N. A. Poklonski, and A. I. Syaglo, Fiz. Tverd. Tela (St. Petersburg) 40, 147 (1998) [Phys. Solid State 40, 51 (1998)].

    Google Scholar 

  12. N. A. Poklonskii and A. I. Syaglo, Abstracts of the Proceedings 3rd All-Russia Conf. in Semiconductor Physics [in Russian], FIAN, Moscow (1997), p. 117.

    Google Scholar 

  13. N. A. Poklonski and V. F. Stelmakh, Phys. Status Solidi B 117, 93 (1983).

    Google Scholar 

  14. F. M. Ismagilova, L. B. Litvak-Gorskaya, G. Ya. Lugovaya, and I. E. Trofimov, Fiz. Tekh. Poluprovodn. 25, 225 (1991) [Sov. Phys. Semicond. 25, 132 (1991)].

    Google Scholar 

  15. E. M. Gershenzon, Yu. A. Gurvich, A. P. Mel’nikov, L. N. Shestakov, Fiz. Tekh. Poluprovodn. 25, 160 (1991) [Sov. Phys. Semicond. 25, 95 (1991)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 33, 402–404 (April 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poklonskii, N.A., Syaglo, A.I. Electrostatic model of the energy gap between Hubbard bands for boron atoms in silicon. Semiconductors 33, 391–393 (1999). https://doi.org/10.1134/1.1187700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187700

Keywords

Navigation