Skip to main content
Log in

Mechanisms of epithelial sodium channel (ENaC) regulation by cortactin: Involvement of dynamin

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

We have recently shown that epithelial sodium channels (ENaCs) are regulated by the actin-binding protein cortactin via the Arp2/3 protein complex. It has been also demonstrated that a GTPase dynamin, which is known to regulate clathrin-mediated endocytosis, can as well initiate signaling cascades regulated by cortactin. This study was designed to investigate the involvement of dynamin into cortactin-mediated regulation of ENaC. Initially, a recently described inhibitor of dynamin, dynasore, was used. However, use of this inhibitor seemed to be inappropriate due to discovered side effects. Thus, treatment of mpkCCDc14 cells monolayers with dynasore (in concentrations of 10 and 100 μM) resulted in a decrease in ENaC-mediated transepithelial currents. Besides, dynasore caused reduced amiloride-sensitive currents in CHO cells transfected with ENaC subunits. Therefore, the data demonstrated that dynasore down regulates both native and overexpressed channel’s activity and use of this drug is not appropriate for studies of ENaC endocytosis. We hypothesize that this effect is most likely caused either by dynasore’s toxic actions upon the cells or by enhanced endocytosis of ENaC-activating proteins. In the following experiments plasmids encoding mutant forms of dynamin and cortactin were used. Dominant negative dynamin (K44A) transfected into CHO cells together with ENaC subunits significantly increased amiloride-sensitive current density compared to cells transfected with ENaC only (control); additional transfection of cortactin together with the K44A dynamin resulted in current density restitution back to the control level. Moreover, ENaC overexpression with the SH3 domain of cortactin, which is responsible for dynamin binding, caused a decrease of ENaC current. Thus, we have shown in this study that cortactin can mediate ENaC activity not only via the Arp2/3 complex, but also through the dynamin-mediated processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez de la Rosa, D., Canessa, C.M., Fyfe, G.K., and Zhang, P., Structure and Regulation of Amiloride-sensitive Sodium Channels, Annu. Rev. Physiol., 2000, vol. 62, pp. 573–594.

    Article  PubMed  CAS  Google Scholar 

  • Bens, M., Vallet, V., Cluzeaud, F., Pascual-Letallec, L., Kahn, A., Rafestin-Oblin, M.E., Rossier, B.C., and Vandewalle, A., Corticosteroid-Dependent Sodium Transport in a Novel Immortalized Mouse Collecting duct Principal Cell Line, J. Am. Soc. Nephrol., 1999, vol. 10, pp. 923–934.

    PubMed  CAS  Google Scholar 

  • Blazer-Yost, B.L., Esterman, M.A., and Vlahos, C.J., Insulin-Stimulated Trafficking of ENaC in Renal Cells Requires PI 3-Kinase Activity, Am. J. Physiol. Cell Physiol., 2003, vol. 284, pp. C1645–C1653.

    PubMed  CAS  Google Scholar 

  • Campbell, D.H., Sutherland, R.L., and Daly, R.J., Signaling Pathways and Structural Domains Required for Phosphorylation of EMS1/Cortactin, Cancer Res., 1999, vol. 59, pp. 5376–5385.

    PubMed  CAS  Google Scholar 

  • Cantiello, H.F., Stow, J.L., Prat, A.G., and Ausiello, D.A., Actin Filaments Regulate Epithelial Na+ Channel Activity, Am. J. Physiol., 1991, vol. 261, pp. C882–C888.

    PubMed  CAS  Google Scholar 

  • Cao, H., Thompson, H.M., Krueger, E.W., and McNiven, M.A., Disruption of Golgi Structure and Function in Mammalian Cells Expressing a Mutant Dynamin, J. Cell Sci., 2000, vol. 113, pp. 1993–2002.

    PubMed  CAS  Google Scholar 

  • Chang, S.S., Grunder, S., Hanukoglu, A., Rosler, A., Mathew, P.M., Hanukoglu, I., Schild, L., Lu, Y., Shimkets, R.A., Nelson-Williams, C., Rossier, B.C., and Lifton, R.P., Mutations in Subunits of the Epithelial Sodium Channel Cause Salt Wasting with Hyperkalaemic Acidosis, Pseudohypoaldosteronism Type 1, Nat. Genet., 1996, vol. 12, pp. 248–253.

    Article  PubMed  CAS  Google Scholar 

  • Cosen-Binker, L.I. and Kapus, A., Cortactin: The Gray Eminence of the Cytoskeleton, Physiology (Bethesda), 2006, vol. 21, pp. 352–361.

    Article  CAS  Google Scholar 

  • Gallet, C., Rosa, J.P., Habib, A., Lebret, M., Levy-Toledano, S., and Maclouf, J., Tyrosine Phosphorylation of Cortactin Associated with Syk Accompanies Thromboxane Analogue-Induced Platelet Shape Change, J. Biol. Chem., 1999, vol. 274, pp. 23610–23616.

    Article  PubMed  CAS  Google Scholar 

  • Garty, H. and Palmer, L.G., Epithelial Sodium Channels: Function, Structure, and Regulation, Physiol. Rev., 1997, vol. 77, pp. 359–396.

    PubMed  CAS  Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J., Improved Patch-Clamp Techniques for High-Resolution Current Recording from Cells and Cell-Free Membrane Patches, Pflügers Archiv, 1981, vol. 391, pp. 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Hansson, J.H., Nelson-Williams, C., Suzuki, H., Schild, L., Shimkets, R., Lu, Y., Canessa, C., Iwasaki, T., Rossier, B, and Lifton, R.P., Hypertension Caused by a Truncated Epithelial Sodium Channel Gamma Subunit: Genetic Heterogeneity of Liddle Syndrome, Nat. Genet., 1995, vol. 11, pp. 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C., Ni, Y., Wang, T., Gao, Y., Haudenschild, C.C., and Zhan, X., Down-Regulation of the Filamentous Actin Cross-Linking Activity of Cortactin by Src-Mediated Tyrosine Phosphorylation, J. Biol. Chem., 1997, vol. 272, pp. 13911–13915.

    Article  PubMed  CAS  Google Scholar 

  • Ilatovskaya, D.V., Levchenko, V., Ryan, R.P., Cowley, A.W., Jr., and Staruschenko, A.A., NSAIDs Acutely Inhibit TRPC Channels in Freshly Isolated Rat Glomeruli, Bichem. Biophys. Res. Commun., 2011a, vol. 408, pp. 242–247.

    Article  CAS  Google Scholar 

  • Ilatovskaya, D.V., Pavlov, T.S., Levchenko, V., Negulyaev, Y.A., and Staruschenko, A.A., Cortical Actin Binding Protein Cortactin Mediates ENaC Activity via Arp2/3 Complex, FASEB J., 2011b, vol. 25, pp. 2688–2699.

    Article  PubMed  CAS  Google Scholar 

  • Kanner, S.B., Reynolds, A.B., Vines, R.R., and Parsons, J.T., Monoclonal Antibodies to Individual Tyrosine-Phosphorylated Protein Substrates of Oncogene-Encoded Tyrosine Kinases, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 3328–3332.

    Article  PubMed  CAS  Google Scholar 

  • Kapus, A., Szaszi, K., Sun, J., Rizoli, S., and Rotstein, O.D., Cell Shrinkage Regulates Src Kinases and Induces Tyrosine Phosphorylation of Cortactin, Independent of the Osmotic Regulation of Na+/H+ Exchangers, J. Biol. Chem., 1999, vol. 274, pp. 8093–8102.

    Article  PubMed  CAS  Google Scholar 

  • Kapus, A., Di, Ciano, C., Sun, J., Zhan, X., Kim, L., Wong, T.W., and Rotstein, O.D., Cell Volume-Dependent Phosphorylation of Proteins of the Cortical Cytoskeleton and Cell-Cell Contact Sites. The Role of Fyn and FER Kinases, J. Biol. Chem., 2000, vol. 275, pp. 32289–32298.

    Article  PubMed  CAS  Google Scholar 

  • Karpushev, A.V., Levchenko, V., Pavlov, T.S., Lam, V.Y., Vinnakota, K.C., Vandewalle, A., Wakatsuki, T., and Staruschenko, A., Regulation of ENaC Expression at the Cell Surface by Rab11, Biochem. Biophys. Res. Commun., 2008, vol. 377, pp. 521–525.

    Article  PubMed  CAS  Google Scholar 

  • Karpushev, A.V., Ilatovskaya, D.V., Pavlov, T.S., Negulyaev, Y.A., and Staruschenko, A.A., Intact Cytoskeleton Is Required for Small G Protein Dependent Activation of the Epithelial Na+ Channel, PLoS One, 2010a, vol. 5, p. e8827.

    Article  PubMed  Google Scholar 

  • Karpushev, A.V., Ilatovskaya, D.V., and Staruschenko, A.B., The Actin Cytoskeleton and Small G Protein RhoA Are not Involved in Flow-Dependent Activation of ENaC, BMC Res. Notes, 2010b, vol. 3, p. 210.

    Article  PubMed  Google Scholar 

  • Karpushev, A.V., Levchenko, V., Ilatovskaya, D.V., Pavlov, T.S., and Staruschenko, A., Novel Role of Rac1/WAVE Signaling Mechanism in Regulation of the Epithelial Na+ Channel, Hypertension, 2011, vol. 57, pp. 996–1002.

    Article  PubMed  CAS  Google Scholar 

  • Kellenberger, S. and Schild, L., Epithelial Sodium Channel/Degenerin Family of Ion Channels: A Variety of Functions for a Shared Structure, Physiol. Rev., 2002, vol. 82, pp. 735–767.

    PubMed  CAS  Google Scholar 

  • Kirchhausen, T., Macia, E., and Pelish, H.E., Use of Dynasore, the Small Molecule Inhibitor of Dynamin, in the Regulation of Endocytosis, Methods Enzymol., 2008, vol. 438, pp. 77–93.

    Article  PubMed  CAS  Google Scholar 

  • Levchenko, V., Zheleznova, N.N., Pavlov, T.S., Vandewalle, A., Wilson, P.D., and Staruschenko, A., EGF and Its Related Growth Factors Mediate Sodium Transport in MpkCCD(c14) Cells via ErbB2 (neu/HER-2) Receptor, J. Cell. Physiol., 2010, vol. 223, pp. 252–259.

    PubMed  CAS  Google Scholar 

  • Lifton, R.P., Genetic Determinants of Human Hypertension, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 8545–8551.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Quiles, N., Ho, H.Y., Kirschner, M.W., Ramesh, N., and Geha, R.S., Erk/Src Phosphorylation of Cortactin Acts as a Switch On/Switch Off Mechanism That Controls Its Ability to Activate N-WASP, Mol. Cell Biol., 2004, vol. 24, pp. 5269–5280.

    Article  PubMed  CAS  Google Scholar 

  • Mazzochi, C., Benos, D.J., and Smith, P.R., Interaction of Epithelial Ion Channels with the Actin-Based Cytoskeleton, Am. J. Physiol. Renal Physiol., 2006a, vol. 291, pp. F1113–F1122.

    Article  PubMed  CAS  Google Scholar 

  • Mazzochi, C., Bubien, J.K., Smith, P.R., and Benos, D.J., The Carboxyl Terminus of the Alpha-Subunit of the Amiloride-Sensitive Epithelial Sodium Channel Binds to F-Actin, J. Biol. Chem., 2006b, vol. 281, pp. 6528–6538.

    Article  PubMed  CAS  Google Scholar 

  • Meighan, S.E., Meighan, P.C., Choudhury, P., Davis, C.J., Olson, M.L., Zornes, P.A., Wright, J.W., and Harding, J.W., Effects of Extracellular Matrix-Degrading Proteases Matrix Metalloproteinases 3 and 9 on Spatial Learning and Synaptic Plasticity, J. Neurochem., 2006, vol. 96, pp. 1227–1241.

    Article  PubMed  CAS  Google Scholar 

  • Mettlen, M., Pucaduil, T., Ramachandran, R., and Schmid, S.L., Dissecting Dynamin’s Role in Clathrin-Mediated Endocytosis, Biochem. Soc. Trans., 2009, vol. 37, pp. 1022–1026.

    Article  PubMed  CAS  Google Scholar 

  • Mizutani, K., Miki, H., He, H., Maruta, H., and Takenawa, T., Essential Role of Neural Wiskott-Aldrich Syndrome Protein in Podosome Formation and Degradation of Extracellular Matrix in Src-Transformed Fibroblasts, Cancer Res., 2002, vol. 62, pp. 669–674.

    PubMed  CAS  Google Scholar 

  • Mooren, O.L., Kotova, T.I., Moore, A.J., and Schafer, D.A., Dynamin2 GTPase and Cortactin Remodel Actin Filaments, J. Biol. Chem., 2009, vol. 284, pp. 23995–24005.

    Article  PubMed  CAS  Google Scholar 

  • Rossier, B.C. and Shield, R., Epithelial Sodium Channel: Mendelian versus Essential Hypertension, Hypertension, 2008, vol. 52, pp. 595–600.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, D.A., Weed, S.A., Binns, D., Karginov, A.V., Parsons, J.T., and Cooper, J.A., Dynamin2 and Cortactin Regulate Actin Assembly and Filament Organization, Curr. Biol., 2002, vol. 12, pp. 1852–1857.

    Article  PubMed  CAS  Google Scholar 

  • Schild, L., The Epithelial Sodium Channel: From Molecule to Disease, Rev. Physiol. Biochem. Pharmacol., 2004, vol. 151, pp. 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Shimkets, R.A., Lifton, R.P., and Canessa, C.M., The Activity of the Epithelial Sodium Channel Is Regulated by Clathrin-Mediated Endocytosis, J. Biol. Chem., 1997, vol. 272, pp. 25537–25541.

    Article  PubMed  CAS  Google Scholar 

  • Staruschenko, A., Medina, J.L., Patel, P., Shapiro, M.S., Booth, R.E., and Stockand, J.D., Fluorescence Resonance Energy Transfer Analysis of Subunit Stoichiometry of the Epithelial Na+ Channel, J. Biol. Chem., 2004a, vol. 279, pp. 27729–27734.

    Article  PubMed  CAS  Google Scholar 

  • Staruschenko, A., Patel, P., Tong, Q., Medina, J.L., and Stockand, J.D., Ras Activates the Epithelial Na(+) Channel through Phosphoinositide 3-OH Kinase Signaling, J. Biol. Chem., 2004b, vol. 279, pp. 37771–37778.

    Article  PubMed  CAS  Google Scholar 

  • Staruschenko, A., Pochynyuk, O.M., and Stockand, J.D., Regulation of Epithelial Na+ Channel Activity by Conserved Serine/Threonine Switches within Sorting Signals, J. Biol. Chem., 2005, vol. 280, pp. 39161–39167.

    Article  PubMed  CAS  Google Scholar 

  • Takai, Y., Sasaki, T., and Maozaki, T., Small GTP-Binding Proteins, Physiol. Rev., 2001, vol. 81, pp. 153–208.

    PubMed  CAS  Google Scholar 

  • Tian, L., Chen, L., McClafferty, H., Sailer, C.A., Ruth, P., Knaus, H.G., and Shipston, M.J., A Noncanonical SH3 Domain Binding Motif Links BK Channels to the Actin Cytoskeleton via the SH3 Adapter Cortactin, FASEB J., 2006, vol. 20, pp. 2588–2590.

    Article  PubMed  CAS  Google Scholar 

  • Tian, L., McClafferty, H., Chen, L., and Shipston, M.J., Reversible Tyrosine Protein Phosphorylation Regulates Large Conductance Voltage- and Calcium-Activated Potassium Channels via Cortactin, J. Biol. Chem., 2008, vol. 283, pp. 3067–3076.

    Article  PubMed  CAS  Google Scholar 

  • Uruno, T., Liu, J., Zhang, P., Fan, Y., Egile, C., Li, R., Mueller, S.C., and Zhan, X., Activation of Arp2/3 Complex-Mediated Actin Polymerization by Cortactin, Nat. Cell Biol., 2001, vol. 3, pp. 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Vachugova, D.V. and Morachevskaya, E.A., Mechanosensitivity of Cationic Channels of DEG/ENaC Family, Tsitologiia, 2009, vol. 51, no. 10, pp. 806–814.

    PubMed  CAS  Google Scholar 

  • Vidal, C., Geny, B., Melle, J., Jandrot-Perrus, M., and Fontenay-Roupie, M., Cdc42/Rac1-Dependent Activation of the P21-Activated Kinase (PAK) Regulates Human Platelet Lamellipodia Spreading: Implication of the Cortical-Actin Binding Protein Cortactin, Blood, 2002, vol. 100, pp. 4462–4469.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Traub, L.M., Weixel, K.M., Hawryluk, M.J., Shah, N., Edinger, R.S., Perry, C.J., Kester, L., Butterworth, M.B., Peters, K.W., Kleyman, T.R., Frizzell, R.A., and Johnson, J.P., Clathrin-Mediated Endocytosis of the Epithelial Sodium Channel. Role of Epsin, J. Biol. Chem., 2006, vol. 281, pp. 14129–14135.

    Article  PubMed  CAS  Google Scholar 

  • Weed, S.A. and Parsons, J.T., Cortactin: Coupling Membrane Dynamics to Cortical Actin Assembly, Oncogene, 2001, vol. 20, pp. 6418–6434.

    Article  PubMed  CAS  Google Scholar 

  • Williams, M.R., Markey, J.C., Doczi, M.A., and Morielli, A.D., An Essential Role for Cortactin in the Modulation of the Potassium Channel Kv1–2, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 17412–17417.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H. and Parsons, J.T., Cortactin, an 80/85-Kilodalton Pp60src Substrate, Is a Filamentous Actin-Binding Protein Enriched in the Cell Cortex, J. Cell Biol., 1993, vol. 120, pp. 1417–1426.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Ilatovskaya.

Additional information

Original Russian Text © D.V. Ilatovskaya, T.S. Pavlov, Y.A. Negulyaev, A. Staruschenko, 2011, published in Tsitologiya, 2011, Vol. 53, No. 11, pp. 903–910.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilatovskaya, D.V., Pavlov, T.S., Negulyaev, Y.A. et al. Mechanisms of epithelial sodium channel (ENaC) regulation by cortactin: Involvement of dynamin. Cell Tiss. Biol. 6, 52–59 (2012). https://doi.org/10.1134/S1990519X1201004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X1201004X

Keywords

Navigation