Skip to main content
Log in

Effects of inhibitors of key enzymes of sphingolipid metabolism on insulin-induced glucose uptake and glycogen synthesis in liver cells of old rats

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Sphingolipids play an important role in the development of insulin resistance. Ceramides are the most potent inhibitors of insulin signal transduction. Ceramides are generated in response to stress stimuli and in old age. In this work, we studied the possible contribution of different pathways of sphingolipid metabolism in age-dependent insulin resistance development in liver cells. Inhibition of key enzymes of sphingolipid synthesis (serine palmitoyl transferase, ceramide synthase) and degradation (neutral and acidic SMases) by means of specific inhibitors (myriocin, fumonisin B1, imipramine, and GW4869) was followed with the reduction of ceramide level and partly improved insulin regulation of glucose metabolism in “old” hepatocytes. Imipramine and GW4869 decreased significantly the acidic and neutral SMase activities, respectively. Treatment of “old” cells with myriocin or fumonisin B1 reduced the elevated in old age ceramide and SM synthesis. Ceramide and SM levels and glucose metabolism regulation by insulin could be improved with concerted action of all tested inhibitors of sphingolipid turnover on hepatocytes. The data demonstrate that not only newly synthesized ceramide and SM but also neutral and acidic SMase-dependent ceramide accumulation plays an important role in development of agedependent insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Akt/PKB:

protein kinase B

GLUT:

glucose transporter

IL:

interleukin

mTOR:

mammalian target of rapamycin

PKC:

protein kinase C

PLD:

phospholipase D

SM:

sphingomyelin

SMase:

sphingomyelinase

SPT:

serine palmitoyl CoA transferase

TNF-α:

tumor necrosis factor α

References

  1. Holland, W. L., and Summers, S. A. (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism, Endocrine Rev., 29, 381–402.

    Article  CAS  Google Scholar 

  2. Babenko, N. A. (2011) in Saturated Fats: Metabolism, Disease Risks and Public Awareness (Langella, J. P., ed.) Nova Science Publishers, New York, pp. 71–97.

  3. Stratford, S., DeWald, D. B., and Summers, S. A. (2001) Ceramide dissociates 3′-phosphoinositide production from pleckstrin homology domain translocation, Biochem. J., 354, 359–368.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ugi, S., Imamura, T., Maegawa, H., Egawa, K., Yoshizaki, T., Shi, K., Obata, T., Ebina, Y., Kashiwagi, A., and Olefsky, J. M. (2004) Protein phosphatase 2A negatively regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes, Mol. Cell. Biol., 24, 8778–8789.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Babenko, N. A., and Kharchenko, V. S. (2012) Ceramides inhibit phospholipase D-dependent insulin signaling in liver cells of old rats, Biochemistry (Moscow), 77, 180–186.

    Article  CAS  Google Scholar 

  6. Pileggi, A., Fenjves, E. S., Klein, D., Ricordi, C., and Pastori, R. L. (2004) Protecting pancreatic beta-cells, IUBMB Life, 56, 387–394.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, H., Przybylska, M., Wu, I. H., Zhang, J., Siegel, C., Komarnitsky, S., Yew, N. S., and Cheng, S. H. (2007) Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes, Diabetes, 56, 1210–1218.

    Article  CAS  PubMed  Google Scholar 

  8. Adams, 2nd, J. M., Pratipanawatr, T., Berria, R., Wang, E., DeFronzo, R. A., Sullards, M. C., and Mandarino, L. J. (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans, Diabetes, 53, 25–31.

    Article  CAS  PubMed  Google Scholar 

  9. Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., Kono, M., Tsuji, S., Daniotti, J. L., Werth, N., Sandhoff, R., Sandhoff, K., and Proia, R. L. (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3, Proc. Natl. Acad. Sci. USA, 100, 3445–3449.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Li, Zh., Zhang, H., Liu, J., Liang, Ch.-P., Li, Ya., Li, Yu., Teitelman, G., Beyer, Th., Bui, H. H., Peake, D., Zhang, Y., Sanders, Ph., Kuo, M.-Sh., Park, T.-S., Cao, G., and Jiang, X.-Ch. (2011) Reducing plasma membrane sphingomyelin increases insulin sensitivity, Mol. Cell. Biol., 31, 4205–4218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kralik, S. F., Liu, P., Leffler, B. J., and Elmendorf, J. S. (2002) Ceramide and glucosamine antagonism of alternate signaling pathways regulating insulin- and osmotic shock-induced glucose transporter 4 translocation, Endocrinology, 143, 37–46.

    Article  CAS  PubMed  Google Scholar 

  12. Skovbro, M., Baranowski, M., Skov-Jensen, C., Flint, A., Dela, F., Gorski, J., and Helge, J. W. (2008) Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity, Diabetologia, 51, 1253–1260.

    Article  CAS  PubMed  Google Scholar 

  13. Zeghari, N., Younsi, M., Meyer, L., Donner, M., Drouin, P., and Ziegler, O. (2000) Adipocyte and erythrocyte plasma membrane phospholipid composition and hyperinsulinemia: a study in nondiabetic and diabetic obese women, Int. J. Obes. Relat. Metab. Disord., 24, 1600–1607.

    Article  CAS  PubMed  Google Scholar 

  14. Mitsutake, S., Zama, K., Yokota, H., Yoshida, T., Tanaka, M., Mitsui, M., Ikawa, M., Okabe, M., Tanaka, Y., Yamashita, T., Takemoto, H., Okazaki, T., Watanabe, K., and Igarashi, Y. (2011) Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes, J. Biol. Chem., 286, 28544–28555.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Petrenko, A. Yu., Sukach, A. N., and Roslyakov, A. D. (1991) Isolation of rat hepatocytes by a nonenzymatic method: detoxification and respiratory activities, Biochemistry (Moscow), 56, 1160–1162.

    Google Scholar 

  16. Brutman-Barazani, T., Horovitz-Fried, M., Aga-Mizrahi, Sh., Brand, Ch., Brodie, Ch., Rosa, J., and Sampson, S. R. (2012) Protein kinase Cδ but not PKCα is involved in insulin-induced glucose metabolism in hepatocytes, J. Cell. Biochem., 113, 2064–2076.

    Article  CAS  PubMed  Google Scholar 

  17. Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  18. Wadsworth, J. M., Clarke, D. J., McMahon, S. A., Lowther, J. P., Beattie, A. E., Langridge-Smith, P. R., Broughton, H. B., Dunn, T. M., Naismith, J. H., and Campopiano, D. J. (2013) The chemical basis of serine palmitoyl transferase inhibition by myriocin, J. Am. Chem. Soc., 135, 14276–14285.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, E., Norred, W. P., Bacon, C. W., Riley, R. T., and Merrill, A. H., Jr. (1991) Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme, J. Biol. Chem., 266, 14486–14490.

    CAS  PubMed  Google Scholar 

  20. Babenko, N. A., Hassouneh, L. Kh. M., Kharchenko, V. S., and Garkavenko, V. V. (2012) Vitamin E prevents the age-dependent and palmitate-induced disturbances of sphingolipid turnover in liver cells, Age (Dordr.), 34, 905–915.

    Article  CAS  Google Scholar 

  21. Kornhuber, J., Tripal, Ph., Reichel, M., Muhle, C., Rhein, C., Muehlbacher, M., Groemer, T. W., and Gulbins, E. (2010) Functional inhibitors of acid sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications, Cell Physiol. Biochem., 26, 9–20.

    Article  CAS  PubMed  Google Scholar 

  22. Luberto, C., Hassler, D. F., Signorelli, P., Okamoto, Y., Sawai, H., Boros, E., Hazen-Martin, D. J., Obeid, L. M., Hannun, Y. A., and Smith, G. K. (2002) Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase, J. Biol. Chem., 277, 41128–41139.

    Article  CAS  PubMed  Google Scholar 

  23. Leclercq, I. A., Morais, A. D. S., Schroyen, B., Van Hul, N., and Geerts, A. (2007) Insulin resistance in hepatocytes and sinusoidal liver cell: mechanisms and consequences, J. Hepatol., 47, 142–156.

    Article  CAS  PubMed  Google Scholar 

  24. Dodson, M. M., Kulkarni, R. N., Postic, K., Previs, S. F., Shulman, G. I., Magnuson, M. A., and Khan, R. C. (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction, Mol. Cell, 6, 87–97.

    Article  Google Scholar 

  25. Le Couteur, D. G., Everitt, A., and Lebel, M. (2009) The aging liver, Geriatr. Aging, 12, 319–322.

    Google Scholar 

  26. Babenko, N. A., and Semenova, Ya. A. (2010) Effects of long-term fish oil-enriched diet on the sphingolipid metabolism in brain of old rats, Exp. Gerontol., 45, 375–380.

    Article  CAS  PubMed  Google Scholar 

  27. Babenko, N. A., and Shakhova, E. G. (2014) Long-term food restriction prevents aging-associated sphingolipid turnover dysregulation in the brain, Arch. Gerontol. Geriatr., 58, 420–426.

    Article  PubMed  Google Scholar 

  28. Lightle, S. A., Oakley, J. I., and Nikolova-Karakashian, M. N. (2000) Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging, Mech. Ageing Dev., 120, 111–125.

    Article  CAS  PubMed  Google Scholar 

  29. Larsen, P. J., and Tennagels, N. (2014) On ceramides, other sphingolipids and impaired glucose homeostasis, Mol. Metab., 28, 252–260.

    Article  Google Scholar 

  30. Galbo, T., and Shulman, G. I. (2013) Lipid induced hepatic insulin resistance, Aging, 5, 582–583.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Holland, W. L., Brozinick, J. T., Wang, L.-P., Hawkins, E. D., Sargent, K. M., Liu, Y., Narra, K., Hoehn, K. L., Knotts, T. A., Siesky, A., Nelson, D. H., Karathanasis, S. K., Fontenot, G. K., Birnbaum, M. J., and Summers, S. A. (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance, Cell Metab., 5, 167–179.

    Article  CAS  PubMed  Google Scholar 

  32. Yang, G., Badeanlou, L., Bielawski, J., Roberts, A. J., and Hannun, Y. A. (2009) Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome, Am. J. Physiol. Endocrinol. Metab., 297, E211–E224.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ussher, J. R., Koves, T. R., Cadete, V. J. J., Zhang, L., Jaswal, J. S., Swyrd, S. J., Lopaschuk, D. G., Proctor, S. D., Keung, W., Muoio, D. M., and Lopaschuk, G. D. (2010) Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption, Diabetes, 59, 2453–2464.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chavez, J. A., Knotts, T. A., Wang, L.-P., Li, G., Dobrowsky, R. T., Florant, G. L., and Summers, S. A. (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids, J. Biol. Chem., 278, 10297–10303.

    Article  CAS  PubMed  Google Scholar 

  35. Powell, D. J., Turban, S., Gray, A., Hajduch, E., and Hundal, H. S. (2004) Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells, Biochem. J., 382, 619–629.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Watson, M. L., Coghlan, M., and Hundal, H. S. (2009) Modulating serine palmitoyl transferase (SPT) expression and activity unveils a crucial role in lipid-induced insulin resistance in rat skeletal muscle cells, Biochem. J., 417, 791–801.

    Article  CAS  PubMed  Google Scholar 

  37. Teruel, T., Hernandez, R., and Lorenzo, M. (2001) Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state, Diabetes, 50, 2563–2571.

    Article  CAS  PubMed  Google Scholar 

  38. Peraldi, P., Hotamisligil, G. S., Buurman, W. A., White, M. F., and Spiegelman, B. M. (1996) Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase, J. Biol. Chem., 271, 13018–13022.

    Article  CAS  PubMed  Google Scholar 

  39. Kanety, H., Hemi, R., Papa, M. Z., and Karasik, A. (1996) Sphingomyelinase and ceramide suppress insulin-induced tyrosine phosphorylation of the insulin receptor substrate-1, J. Biol. Chem., 271, 9895–9897.

    Article  CAS  PubMed  Google Scholar 

  40. Begum, N., and Ragolia, L. (1996) Effect of tumor necrosis factor-alpha on insulin action in cultured rat skeletal muscle cells, Endocrinology, 137, 2441–2446.

    CAS  PubMed  Google Scholar 

  41. Van Sluijters, D. A., van Woerkom, G. M., Aerts, J. M. F. G., and Meijer, A. J. (1999) Sphingomyelinase treatment of rat hepatocytes inhibits cell-swelling-stimulated glycogen synthesis by causing cell shrinkage, Eur. J. Biochem., 266, 653–659.

    Article  PubMed  Google Scholar 

  42. Rutkute, K., Karakashian, A. A., Giltiay, N. V., Dobierzewska, A., and Nikolova-Karakashian, M. N. (2007) Aging in rat causes hepatic hyperresponsiveness to interleukin-1beta which is mediated by neutral sphingomyelinase-2, Hepatology, 46, 1166–1176.

    Article  CAS  PubMed  Google Scholar 

  43. Lagathu, C., Yvan-Charvet, L., Bastard, J. P., Maachi, M., Quignard-Boulange, A., Capeau, J., and Caron, M. (2006) Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes, Diabetologia, 49, 2162–2173.

    Article  CAS  PubMed  Google Scholar 

  44. Bruunsgaar, H. (2002) Effects of tumor necrosis factoralpha and interleukin-6 in elderly populations, Eur. Cytokine Netw., 13, 389–391.

    Google Scholar 

  45. Rikans, L. E., DeCicco, L. A., Hornbrook, K. R., and Yamano, T. (1999) Effect of age and carbon tetrachloride on cytokine concentrations in rat liver, Mech. Ageing Dev., 108, 173–182.

    Article  CAS  PubMed  Google Scholar 

  46. Kirwan, J. P., Krishnan, R. K., Weaver, J. A., Del Aguila, L. F., and Evans, W. J. (2001) Human aging is associated with altered TNF-alpha production during hyperglycemia and hyperinsulinemia, Am. J. Physiol. Endocrinol. Metab., 281, E1137–E1143.

    CAS  PubMed  Google Scholar 

  47. Bruce, C. R., and Dyck, D. J. (2004) Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-alpha, Am. J. Physiol. Endocrinol. Metab., 287, E616–E621.

    Article  CAS  PubMed  Google Scholar 

  48. Steinberg, G. R., Michell, B. J., van Denderen, B. J., Watt, M. J., Carey, A. L., Fam, B. C., Andrikopoulos, S., Proietto, J., Gorgun, C. Z., Carling, D., Hotamisligil, G. S., Febbraio, M. A., Kay, T. W., and Kemp, B. E. (2006) Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling, Cell Metab., 4, 465–474.

    Article  CAS  PubMed  Google Scholar 

  49. Dyck, D. J., Heigenhauser, G. J., and Bruce, C. R. (2006) The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity, Acta Physiol. (Oxf.), 186, 5–16.

    Article  CAS  Google Scholar 

  50. Nov, O., Kohl, A., Lewis, E. C., Bashan, N., Dvir, I., Ben-Shlomo, S., Fishman, S., Wueest, S., Konrad, D., and Rudich, A. (2010) Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation, Endocrinology, 151, 4247–4256.

    Article  CAS  PubMed  Google Scholar 

  51. Dobierzewska, A., Shi, L., Karakashian, A. A., and Nikolova-Karakashian, M. N. (2012) Interleukin 1β regulation of FoxO1 protein content and localization: evidence for novel ceramide-dependent mechanism, J. Biol. Chem., 287, 44749–44760.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ugi, S., Imamura, T., Maegawa, H., Egawa, K., Yoshizaki, T., Shi, K., Obata, T., Ebina, Y., Kashiwagi, A., and Olefsky, J. M. (2004) Protein phosphatase 2A negatively regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes, Mol. Cell Biol., 24, 8778–8789.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Babenko.

Additional information

Original Russian Text © N. A. Babenko, V. S. Kharchenko, 2015, published in Biokhimiya, 2015, Vol. 80, No. 1, pp. 132–141.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, N.A., Kharchenko, V.S. Effects of inhibitors of key enzymes of sphingolipid metabolism on insulin-induced glucose uptake and glycogen synthesis in liver cells of old rats. Biochemistry Moscow 80, 104–112 (2015). https://doi.org/10.1134/S0006297915010125

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915010125

Key words

Navigation