Skip to main content
Log in

Effect of boron ion implantation and subsequent anneals on the properties of Si nanocrystals

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

To study the effect of implantation of 1013–1016 cm−2 of boron ions and subsequent steady-state thermal or pulsed (20 ns) laser anneals on the properties of Si nanocrystals in SiO2, methods of photoluminescence and Raman scattering are used. Implantation of B ions quenched the photoluminescence caused by dimensional quantization. A comparison with the effect of other ions shows that an increase in the mass of incident particles leads to an increase in the contribution of elastic losses to the photoluminescence quenching. This circumstance is accounted for by the binding of the generated defects into complexes that are not the center of nonradiative recombination. Our studies confirmed the promotion of crystallization of nanoprecipitates as a result of the introduction of an impurity and also revealed special features related to the small size of boron atoms. It is shown that the postimplantation laser-induced anneals are efficient methods for recovering photoluminescence; this efficiency is caused by the possible short-term melting of nanocrystals. Notwithstanding the evidence indicating that boron enters the nanocrystals, there is no indication that free holes appear. It is believed that this phenomenon is caused by the fact that the depth of impurity levels is larger in nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lannoo, C. Delerue, and G. Allan, J. Lumin. 70, 170 (1996).

    Google Scholar 

  2. Y. Kanazawa, M. Fujii, S. Hayashi, and K. Yamamoto, Solid State Commun. 100, 227 (1996).

    Google Scholar 

  3. M. Fujii, S. Hayashi, and K. Yamamoto, J. Appl. Phys. 83, 7953 (1998).

    ADS  Google Scholar 

  4. M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 75, 184 (1999).

    ADS  Google Scholar 

  5. Y. Kanazawa, M. Fujii, S. Hayashi, and K. Yamamoto, Mater. Sci. Eng. A 217-218, 155 (1996).

    Google Scholar 

  6. A. Mimura, M. Fujii, S. Hayashi, et al., Phys. Rev. B 62, 12 625 (2000).

    Article  Google Scholar 

  7. M. Fujii, Y. Yamaguchi, Y. Takase, et al., Appl. Phys. Lett. 85, 1158 (2004).

    Article  ADS  Google Scholar 

  8. D. I. Tetel’baum, I. A. Karpovich, M. V. Stepikhova, et al., Poverkhnost, No. 5, 31 (1998).

  9. G. A. Kachurin, S. G. Yanovskaya, D. I. Tetel’baum, and A. N. Mikhaĭlov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 738 (2003) [Semiconductors 37, 713 (2003)].

    Google Scholar 

  10. G. A. Kachurin, S. G. Cherkova, V. A. Volodin, et al., Nucl. Instrum. Methods Phys. Res. B 222, 497 (2004).

    Article  ADS  Google Scholar 

  11. A. V. Dvurechenskiĭ, G. A. Kachurin, E. V. Nidaev, and L. S. Smirnov, Pulse Annealing of Semiconductor Materials (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  12. V. M. Koshkin and V. V. Slezov, Pis’ma Zh. Tekh. Fiz. 30 (9), 38 (2004) [Tech. Phys. Lett. 30, 367 (2004)].

    Google Scholar 

  13. G. A. Kachurin, I. E. Tyschenko, V. Skorupa, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 31, 730 (1997) [Semiconductors 31, 626 (1997)].

    Google Scholar 

  14. G. A. Kachurin, I. E. Tyschenko, K. S. Zhuravlev, et al., Nucl. Instrum. Methods Phys. Res. B 122, 571 (1997).

    Article  ADS  Google Scholar 

  15. G. A. Kachurin, S. G. Yanovskaya, M.-O. Ruault, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1004 (2000) [Semiconductors 34, 965 (2000)].

    Google Scholar 

  16. M. Klimenkov, W. Matz, S. A. Nepijko, and M. Lehman, Nucl. Instrum. Methods Phys. Res. B 179, 209 (2001).

    Article  ADS  Google Scholar 

  17. L. Czepregi, E. F. Kennedy, T. J. Gallaher, et al., J. Appl. Phys. 48, 4234 (1977).

    ADS  Google Scholar 

  18. D. Pacifici, E. C. Moreira, G. Franzo, et al., Phys. Rev. B 65, 144 109 (2002).

    Article  Google Scholar 

  19. A. Janotta, Y. Dikce, M. Schmidt, et al., J. Appl. Phys. 95, 4060 (2004).

    ADS  Google Scholar 

  20. M. D. Efremov, V. V. Bolotov, V. A. Volodin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 109 (2002) [Semiconductors 36, 102 (2002)].

    Google Scholar 

  21. H. J. von Bardeleben, C. Ortega, A. Grosman, et al., J. Lumin. 57, 301 (1993).

    Google Scholar 

  22. G. Mauckner, W. Rebitzer, K. Thonke, and R. Sauer, Solid State Commun. 91, 717 (1994).

    Article  Google Scholar 

  23. Y. Kanazawa, M. Fujii, S. Hayashi, and K. Yamamoto, Mater. Sci. Eng. A 217-218, 155 (1996).

    Google Scholar 

  24. R. Tsu and D. Babic, Appl. Phys. Lett. 64, 1806 (1994).

    Article  ADS  Google Scholar 

  25. R. Tsu, Appl. Phys. A 71, 391 (2000).

    ADS  Google Scholar 

  26. T. Khasanov, A. S. Mardezhov, S. G. Yanovskaya, et al., Opt. Spektrosk. 90, 924 (2001) [Opt. Spectrosc. 90, 831 (2001)].

    Google Scholar 

  27. T. P. Chen, Y. Liu, M. S. Tse, et al., Phys. Rev. B 68, 153301 (2003).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Kachurin, S.G. Cherkova, V.A. Volodin, D.M. Marin, D.I. Tetel’baum, H. Becker, 2006, published in Fizika i Tekhnika Poluprovodnikov, 2006, Vol. 40, No. 1, pp. 75–81.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachurin, G.A., Cherkova, S.G., Volodin, V.A. et al. Effect of boron ion implantation and subsequent anneals on the properties of Si nanocrystals. Semiconductors 40, 72–78 (2006). https://doi.org/10.1134/S1063782606010131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782606010131

Keywords

Navigation