Skip to main content
Log in

High-power ultrasonic-assisted phenol and dye degradation on porous manganese oxide doped titanium dioxide catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

In this study, a high-power ultrasonicator (600 W) is employed to examine dye degradation and phenol decomposition efficiencies in the presence of catalysts such as K-OMS-2, TiO2, K-OL-1 doped TiO2 and K-OMS-2 doped TiO2. Methylene blue and phenol are chosen as the model pollutants to test the catalytic activity. Effects of ultrasonic power level or ultrasonic intensity, amount of catalysts used and ultrasonic irradiation time for catalytic degradation and removal of phenol were studied. No d-spacing peak shift was observed in intense XRD peaks of K-OMS-2- and K-OL-1-doped TiO2 materials when compared with commercial TiO2. Scanning and transmission electron micrographs (SEM and TEM) show aggregated particle morphology with spherical and rectangular particles for 5 wt % K-OMS-2/TiO2. Methylene blue dye degradation efficiency in the presence of catalytic ultrasonication follows the order like TiO2 > 5 wt % K-OMS-2/TiO2 > 5 wt % K-OL-1/TiO2. The K-OMS-2- and 5 wt % K-OMS-2-doped TiO2 catalyst showed the best and most promising efficiency for phenol removal in ultrasonication process. K-OMS-2 shows the best phenol removal efficiency of 58% within a short duration (30 min) of catalytic ultrasonic-assisted reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Destaillats, H., Hung, H.M., and Hoffmann, M.R., Environ. Sci. Technol., 2000, vol. 34, p. 311.

    Article  CAS  Google Scholar 

  2. Nagata, Y., Nakagawa, M., Okuno, H., Mizukoshi, Y., Yim, B., and Maeda, Y., Ultrason. Sonochem., 2000, vol. 7, p. 115.

    Article  CAS  Google Scholar 

  3. Stavarache, C., Yim, B., Vinatoru, M., and Maeda, Y., Ultrason. Sonochem., 2002, vol. 9, p. 291.

    Article  CAS  Google Scholar 

  4. Suslick, K.S., in Ultrasound: Its Chemical, Physical and Biological Effects, Suslick, K.S., Ed., New York: VCH, 1988.

    Google Scholar 

  5. Suslick, K.S., Science, 1990, vol. 247, p. 1439.

    Article  CAS  Google Scholar 

  6. Suslick, K.S., Hammerton, D.A., and Cline, R.E., J. Am. Chem. Soc., 1986, vol. 108, p. 5641.

    Article  CAS  Google Scholar 

  7. Shutilov, V.A., Fundamental Physics of Ultrasound, New York: Gordon & Breach, 1988.

    Google Scholar 

  8. Li, M., L J.T.I, Sun H.W, Ultroson. Sonochem., 2008, vol. 15, p. 37.

    Article  Google Scholar 

  9. Suslick, K.S. and Price, G.J., Annu. Rev. Mater. Sci., 1999, vol. 29, p. 295.

    Article  CAS  Google Scholar 

  10. Dvoranová, D., Brezová, V., Mazúra, M., and Malati, M.A., Appl. Catal., B, 2002, vol. 37, p. 91.

    Article  Google Scholar 

  11. Arroyo, R., Cordoba, G., Padilla, J., and Lara, V.H., Mater. Lett., 2002, vol. 54, p. 397.

    Article  CAS  Google Scholar 

  12. Boreskov, G.K., in Catalysis Science and Technology, Anderson, J.R. and Boudart, M., Eds., Berlin: Springer, 1982, vol. 3.

    Google Scholar 

  13. Luo, J., Zhang, Q., Huang, A., and Suib, S.L., Microporous Mesoporous Mater., 2000, vols. 35–36, p. 209.

    Article  Google Scholar 

  14. Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., and Han, Y.F., Catal. Today, 2008, vol. 131, p. 477.

    Article  CAS  Google Scholar 

  15. Kapteijn, F., Singoredjo, L., van Driel, M., Andreini, A., Moulijn, J.A., Ramis, G., and Busca, G., J. Catal., 1994, vol. 150, p. 105.

    Article  CAS  Google Scholar 

  16. Jothiramalingam, R., Viswanathan, B., and Varadarajan, T.K., Mater. Chem. Phys., 2006, vol. 100, p. 257.

    Article  CAS  Google Scholar 

  17. Yin, Y.G., Xu, W.Q., DeGuzman, R., Suib, S.L., and O’Young, C.L., Inorg. Chem., 1994, vol. 33, p. 4384.

    Article  CAS  Google Scholar 

  18. Post, J.E. and Veblen, D.R., Am. Mineral., 1990, vol. 75, p. 477.

    CAS  Google Scholar 

  19. Jothiramalingam, R. and Wang, M.K., J. Hazard. Mater., 2007, vol. 147, p. 562.

    Article  CAS  Google Scholar 

  20. Carvalho, C., Fernandes, A., Lopes, A., Pinheiro, H., and Goncalves, I., Chemosphere, 2007, vol. 67, p. 1316.

    Article  CAS  Google Scholar 

  21. Dincer, A.R., Gunes, Y., and Karakaya, N., J. Hazard. Mater., 2007, vol. 141, p. 529.

    Article  CAS  Google Scholar 

  22. Jothiramalingam, R., Viswanathan, B., and Varadarajan, T.K., Catal. Commun., 2005, vol. 6, p. 41.

    Article  CAS  Google Scholar 

  23. Gallardo-Amores, J.M., Armaroli, T., Ramis, G., Finocchio, E., and Busca, G., Appl. Catal., B, 1999, vol. 22, p. 249.

    Article  CAS  Google Scholar 

  24. Wang, J., Sun, W., Zhang, Z., Xing, Z., Xu, R., Li, R., Li, Y., and Zhang, X., Ultroson. Sonochem., 2008, vol. 15, p. 301.

    Article  CAS  Google Scholar 

  25. Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J.M., Appl. Catal., B, 2002, vol. 39, p. 75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jothiramalingam.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jothiramalingam, R., Tsao, T.M. & Wang, M.K. High-power ultrasonic-assisted phenol and dye degradation on porous manganese oxide doped titanium dioxide catalysts. Kinet Catal 50, 741–747 (2009). https://doi.org/10.1134/S0023158409050164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158409050164

Keywords

Navigation