Skip to main content
Log in

Room-temperature electric polarization induced by phase separation in multiferroic GdMn2O5

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It was generally accepted until recently that multiferroics RMn2O5 crystallized in the centrosymmetric space group Pbam and ferroelectricity in them could exist only at low temperatures due to the magnetic exchange striction. Recent comprehensive structural studies [V. Baledent et al., Phys. Rev. Lett. 114, 117601 (2015)] have shown that the actual symmetry of RMn2O5 at room temperature is a noncentrosymmetric monoclinic space group Pm, which allows room temperature ferroelectricity to exist. However, such a polarization has not yet been found. Our electric polarization loop studies of GdMn2O5 have revealed that a polarization does exist up to room temperature. This polarization occurs mainly in restricted polar domains that arise in the initial GdMn2O5 matrix due to phase separation and charge carrier self-organization. These domains are selfconsistent with the matrix, which leads to the noncentrosymmetricity of the entire crystal. The polarization is controlled by a magnetic field, thereby demonstrating the presence of magnetoelectric coupling. The lowtemperature ferroelectricity enhances the restricted polar domain polarization along the b axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, and Y. Tokura, Nature (London) 426, 55 (2003).

    Article  ADS  Google Scholar 

  2. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guba, and S.-W. Cheong, Nature (London) 429, 392 (2004).

    Article  ADS  Google Scholar 

  3. H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).

    Article  ADS  Google Scholar 

  4. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).

    Article  ADS  Google Scholar 

  5. Y. Noda, H. Kimura, M. Fukunaga, S. Kobayashi, I. Kagomiya, and K. Kohn, J. Phys.: Condens. Matter 20, 434206 (2008).

    ADS  Google Scholar 

  6. P. G. Radaelli and L. C. Chapon, J. Phys.: Condens. Matter 20, 434213 (2008).

    ADS  Google Scholar 

  7. J. Van den Brink and D. J. Khomskii, J. Phys.: Condens. Matter 20, 434217 (2008).

    Google Scholar 

  8. V. Baledent, S. Chattopadhyay, P. Fertey, M. B. Lepetit, M. Greenblatt, B. Wanklyn, F. O. Saouma, J. I. Jang, and P. Foury-Leylekian, Phys. Rev. Lett. 114, 117601 (2015).

    Article  ADS  Google Scholar 

  9. L. P. Gor’kov, Phys. Usp. 41, 589 (1998).

    Article  Google Scholar 

  10. M. Yu. Kagan and K. I. Kugel, Phys. Usp. 44, 553 (2001).

    Article  ADS  Google Scholar 

  11. P. G. de Gannes, Phys. Rev. 118, 141 (1960).

    Article  ADS  Google Scholar 

  12. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii, S. G. Lushnikov, M. P. Scheglov, S. N. Gvasaliya, A. Savvinov, R. S. Katiyar, H. Kawaji, and T. Atake, Phys. Rev. B 80, 224401 (2009).

    Article  ADS  Google Scholar 

  13. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii, and M. P. Scheglov, J. Phys.: Condens. Matter 23, 456003 (2011).

    ADS  Google Scholar 

  14. E. I. Golovenchits, V. A. Sanina, and V. G. Zalesskii, JETP Lett. 95, 386 (2012).

    Article  ADS  Google Scholar 

  15. V. A. Sanina, E. I. Golovenchits, and V. G. Zalesskii, J. Phys.: Condens. Matter 24, 346002 (2012).

    Google Scholar 

  16. V. A. Sanina, E. I. Golovenchits, B. Kh. Khannanov, M. P. Scheglov, and V. G. Zalesskii, JETP Lett. 100, 407 (2014).

    Article  ADS  Google Scholar 

  17. B. Kh. Khannanov, V. A. Sanina, and E. I. Golovenchits, J. Phys.: Conf. Ser. 572, 012046 (2014).

    ADS  Google Scholar 

  18. N. Lee, C. Vecchini, Y. J. Choi, L. C. Chapon, A. Bombardi, P. G. Radaelli, and S. W. Cheong, Phys. Rev. Lett. 110, 137203 (2013).

    Article  ADS  Google Scholar 

  19. V. A. Sanina, L. M. Sapozhnikova, E. I. Golovenchits, and N. V. Morozov, Sov. Phys. Solid State 30, 1736 (1988).

    Google Scholar 

  20. E. I. Golovenchits, N. V. Morozov, V. A. Sanina, and L. M. Sapozhnikova, Sov. Phys. Solid State 34, 56 (1992).

    Google Scholar 

  21. J. F. Scott, L. Kammerdiner, L. M. Parris, S. Traynor, V. Ottenbacher, A. Shawabkeh, and W. F. Oliver, J. Appl. Phys. 64, 787 (1988).

    Article  ADS  Google Scholar 

  22. M. Fukunaga and Y. Noda, J. Phys. Soc. J. 77, 064706 (2008).

    Article  ADS  Google Scholar 

  23. S. M. Feng, Y. S. Chai, J. L. Zhu, N. Manivannan, Y. S. Oh, L. J. Wang, Y. S. Yang, C. Q. Jin, and K. H. Kim, New J. Phys. 12, 073006 (2010).

    Article  ADS  Google Scholar 

  24. A. R. Long, Adv. Phys. 31, 587 (1982).

    Article  Google Scholar 

  25. M. D. Glinchuk, E. A. Eliseev, and A. N. Morozovska, Phys. Rev. B 78, 134107 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kh. Khannanov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khannanov, B.K., Sanina, V.A., Golovenchits, E.I. et al. Room-temperature electric polarization induced by phase separation in multiferroic GdMn2O5 . Jetp Lett. 103, 248–253 (2016). https://doi.org/10.1134/S002136401604007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401604007X

Keywords

Navigation