Skip to main content
Log in

The mitochondrial genome. The nucleoid

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) in cells is organized in nucleoids containing DNA and various proteins. This review discusses questions of organization and structural dynamics of nucleoids as well as their protein components. The structures of mt-nucleoid from different organisms are compared. The currently accepted model of nucleoid organization is described and questions needing answers for better understanding of the fine mechanisms of the mitochondrial genetic apparatus functioning are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

mtDNA:

mitochondrial DNA

mt genome:

mitochondrial genome

References

  1. Kolesnikov, A. A., and Gerasimov, E. S. (2012) Diversity of mitochondrial genome organization, Biochemistry (Moscow), 77, 1424–1435.

    Article  CAS  Google Scholar 

  2. Nass, S., Nass, M. M., and Hennix, U. (1965) Deoxyribonucleic acid in isolated rat-liver mitochondria, Biochim. Biophys. Acta, 95, 426–435.

    Article  CAS  PubMed  Google Scholar 

  3. Nass, S. (1969) The significance of the structural and functional similarities of bacteria and mitochondria, Int. Rev. Cytol., 25, 55–129.

    Article  CAS  PubMed  Google Scholar 

  4. Bogenhagen, D. F., Wang, Y., Shen, E. L., and Kobayashi, R. (2003) Protein components of mitochondrial DNA nucleoids in higher eukaryotes, Mol. Cell. Proteomics, 2, 1205–1216.

    Article  CAS  PubMed  Google Scholar 

  5. Holt, I. J., He, J., Mao, C.-C., Boyd-Kirkup, J. D., Martinsson, P., Sembongi, H., Reyes, A., and Spelbrink, J. N. (2007) Mammalian mitochondrial nucleoids: organizing an independently minded genome, Mitochondrion, 7, 311–321.

    Article  CAS  PubMed  Google Scholar 

  6. Kucej, M., and Butow, R. A. (2007) Evolutionary tinkering with mitochondrial nucleoids, Trends Cell Biol., 17, 586–592.

    Article  CAS  PubMed  Google Scholar 

  7. Bogenhagen, D. F. (2012) Mitochondrial DNA nucleoid structure, Biochim. Biophys. Acta, 1819, 914–920.

    Article  CAS  PubMed  Google Scholar 

  8. Spelbrink, J. N. (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent development, and future challenges, IUBMB Life, 62, 19–32.

    CAS  PubMed  Google Scholar 

  9. Gilkerson, R., Bravo, L., Garcia, I., Gaytan, N., Herrera, A., Maldonado, A., and Quintanilla, B. (2013) The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis, Cold Spring Harb. Perspect. Biol., 5, a011080.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dai, H., Lo, Y.-S., Litvinchuk, A., Wang, Y.-T., Jane, W.N., Hsiao, L.-J., and Chiang, K.-S. (2005) Structural and functional characterizations of mung bean mitochondrial nucleoids, Nucleic Acids Res., 33, 4725–4739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gualberto, J. M., Mileshina, D., Wallet, C., Niazi, A. K., Weber-Lotfi, F., and Dietrich, A. (2014) The plant mitochondrial genome: dynamics and maintenance, Biochimie, 100, 107–120.

    Article  CAS  PubMed  Google Scholar 

  12. Satoh, M., and Kuroiwa, T. (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell, Exp. Cell Res., 196, 137–140.

    Article  CAS  PubMed  Google Scholar 

  13. Alam, T. I., Kanki, T., Muta, T., Ukaji, K., Abe, Y., Nakayama, H., Takio, K., Hamasaki, N., and Kang, D. (2003) Human mitochondrial DNA is packaged with TFAM, Nucleic Acids Res., 31, 1640–1645.

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi, J., Takemitsu, M., Goto, Y., and Nonaka, I. (1994) Human mitochondria and mitochondrial genome function as a single dynamic cellular unit, J. Cell Biol., 125, 43–50.

    Article  CAS  PubMed  Google Scholar 

  15. Margineantu, D. H., Cox, W. G., Sundell, L., Sherwood, S. W., Beechem, J. M., and Capaldi, R. A. (2002) Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines, Mitochondrion, 1, 425–435.

    Article  CAS  PubMed  Google Scholar 

  16. Garrido, N., Griparic, L., Jokitalo, E., Wartiovaara, J., Van der Bliek, A. M., and Spelbrink, J. N. (2003) Composition and dynamics of human mitochondrial nucleoids, Mol. Biol. Cell, 14, 1583–1596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spelbrink, J. N., Li, F.-Y., Tiranti, V., Nikali, K., Yuan, Q.P., Tariq, M., Wanrooij, S., Garrido, N., Comi, G., Morandi, L., Santoro, L., Toscano, A., Fabrizi, G.-M., Somer, H., Croxen, R., Beeson, D., Poulton, J., Suomalainen, A., Jacobs, H. T., Zeviani, M., and Larsson, C. (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria, Nat. Genet., 28, 223–231.

    Article  CAS  PubMed  Google Scholar 

  18. Gerald, D., Keller, J., Medd, R., Andrei, A. M., Rizzoli, S. O., Luhrmann, R., Jahn, R., Eggeling, C., and Stefan, W. H. (2006) Macromolecular-scale resolution in biological fluorescence microscopy, Proc. Natl. Acad. Sci. USA, 103, 11440–11445.

    Article  Google Scholar 

  19. Kukat, C., Wurm, C. A., Spahr, H., Falkenberg, M., Larsson, N.-G., and Jacobs, S. (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA, Proc. Natl. Acad. Sci. USA, 108, 13534–13539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Legros, F., Malka, F., Frochon, P., Lombes, A., and Rojo, M. (2004) Organization and dynamics of human mitochondrial DNA, J. Cell Sci., 117, 2653–2662.

    Article  CAS  PubMed  Google Scholar 

  21. Iborra, F. J., Kimura, H., and Cook, P. R. (2004) The functional organization of mitochondrial genomes in human cells, BMC Biol., 2, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaufman, B. A., Newman, S. M., Hallberg, R. L., Slaugter, C. A., Perlman, P. S., and Butow, R. A. (2000) In organelle formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins, Proc. Natl. Acad. Sci. USA, 97, 7772–7777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Itoh, K., Izumi, A., Mori, T., Dohmae, N., Yui, R., Maeda-Sano, K., Shirai, Y., Kanaoka, M. M., Kuroiwa, T., Higashiyama, T., Sugita, M., Murakami-Murofushi, K., Kawano, S., and Sasaki, N. (2011) DNA packaging proteins Glom and Glom2 coordinately organize the mitochondrial nucleoid of Physarum polycephalum, Mitochondrion, 11, 575–586.

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki, N., Kuroiva, H., Nishitani, C., Takano, H., Higashiyama, T., Kobayashi, T., Shirai, Y., Sakai, A., Kawano, S., Murakami-Murofushi, K., and Kuroiwa, T. (2003) Glom is a novel mitochondrial DNA packaging protein in Physarum polycephalum and cause intense chromatin condensation without suppressing DNA functions, Mol. Biol. Cell, 14, 4758–4769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simpson, L. (1986) Kinetoplast DNA in trypanosomatids flagellates, Int. Rev Cytol., 99, 119–179.

    Article  CAS  PubMed  Google Scholar 

  26. Kukat, C., Wurm, C. A., Spahr, H., Falkenberg, M., Larsson, N.-G., and Jacobs, S. (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA, Proc. Natl. Acad. Sci. USA, 108, 13534–13539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shiiba, D., Fumoto, S.-I., Miyakawa, I., and Sando, N. (1997) Isolation of giant nucleoids from the yeast Saccharomyces cerevisiae, Protoplasma, 198 177–185.

    Article  CAS  Google Scholar 

  28. Kukat, C., and Larsson, N.-G. (2013) mtDNA makes a Uturn for the mitochondrial nucleoid, Trends Cell Biol., 23, 457–463.

    Article  CAS  PubMed  Google Scholar 

  29. Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R., and Hell, S. W. (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement, Science, 320, 246–249.

    Article  CAS  PubMed  Google Scholar 

  30. Singh, H., Lu, R., Rodriguez, P. F. G., Wu, Y., Bopassa, J. C., Stefani, E., and Toro, L. (2012) Visualization and quantification of cardiac mitochondrial protein clusters with STED microscopy, Mitochondrion, 12, 230–236.

    Article  CAS  PubMed  Google Scholar 

  31. Brown, T. A., Tkachuk, A. N., Shtengel, G., Kopek, B. G., G., Kopek, B. G., Bogenhagen, D. F., Hess, H. F., and Clayton, D. A. (2011) Super-resolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction, Mol. Cell. Biol., 31, 4994–5010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwiatek, J. M., Hinde, E., and Gaus, K. (2014) Microscopy approaches to investigate protein dynamics and lipid organization, Mol. Membr. Biol., 31, 141–151.

    Article  CAS  PubMed  Google Scholar 

  33. Pohjoismaki, J. L. O., and Goffart, S. (2011) Of circles, forks and humanity: topological organization and replication of mammalian mitochondrial DNA, BioEssays, 33, 290–299.

    Article  CAS  PubMed  Google Scholar 

  34. Pohjoismaki, J. L. O., Goffart, S., Tyynismaa, H., Willcox, S., Ide, T., Kang, D., Suyomalainen, A., Karhunen, P. J., Griffith, J. D., Holt, I. J., and Jacobs, H. T. (2009) Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks, J. Biol. Chem., 284, 21446–21457.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, Y., and Bogenhagen, D. F. (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane, J. Biol. Chem., 281, 25791–25802.

    Article  CAS  PubMed  Google Scholar 

  36. Miyakawa, I., Okazaki-Higashi, C., Higashi, T., Furutani, Y., and Sando, N. (1996) Isolation and characterization of mitochondrial nucleoids from the yeast Pichia jadinii, Plant Cell Physiol., 37, 816–824.

    Article  CAS  PubMed  Google Scholar 

  37. Bogenhagen, D. F., Rousseau, D., and Burke, S. (2008) The layered structure of human mitochondrial DNA nucleoids, J. Biol. Chem., 283, 3665–3675.

    Article  CAS  PubMed  Google Scholar 

  38. Hensen, F., Cansiz, S., Gerhold, J. M., and Spelbrink, J. N. (2014) To be or not to be a nucleoid protein: a comparison of mass-spectrometry based approaches in the identification of potential mtDNA-nucleoid associated proteins, Biochimie, 100, 219–226.

    Article  CAS  PubMed  Google Scholar 

  39. Korhonen, J. A., Gaspari, M., and Falkenberg, M. (2003) TWINKLE has 5'-3' DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNAbinding protein, J. Biol. Chem., 278, 48627–48632.

    Article  CAS  PubMed  Google Scholar 

  40. De Vries, R. (2010) DNA condensation in bacteria: interplay between macromolecular crowding and nucleoid proteins, Biochimie, 92, 1715–1721.

    Article  PubMed  Google Scholar 

  41. Kukat, C., Davies, K. M., Wurm, C. A., Spahr, H., Bonekamp, N. A., Kuhl, I., Joos, F., Polosa, P. L., Park, C. B., Posse, V., Falkenberg, M., Jacobs, S., Kulbrandt, W., and Larsson, N.-G. (2015) Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid, Proc. Natl. Acad. Sci. USA, 112, 11288–11293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Malarkey, C. S., Lionetti, C., Deceglie, S., Roberti, M., Churchil, M. E. A., Cantatore, P., and Polosa, P. L. (2016) The sea urchin mitochondrial transcription factor A binds and bends DNA efficiently despite its unusually short Cterminal tail, Mitochondrion, 29, 1–6.

    Article  CAS  PubMed  Google Scholar 

  43. Miyakawa, I., Okamuro, A., Kinski, S., Visacka, K., Tomashka, L., and Nosek, J. (2009) Mitochondrial nucleoids from the yeast Candida parapsilosis: expansion of the repertoire of proteins associated with mitochondrial DNA, Microbiology, 155, 1558–1568.

    Article  CAS  PubMed  Google Scholar 

  44. Bakkalova, J., Arata, K., Matsunobu, M., Ono, B., Aoki, T., Lajdova, D., Nebohacova, M., Nosek, J., Miyakawa, I., and Tomaska, L. (2014) The strictly aerobic yeast Yarrowia lipolytica tolerates loss of a mitochondrial DNA-packaging protein, Eukaryot. Cell, 13, 1143–1157.

    Article  Google Scholar 

  45. Xu, C., and Ray, D. S. (1993) Isolation of proteins associated with kinetoplast DNA networks in vivo, Proc. Natl. Acad. Sci. USA, 90, 1786–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tomaska, L., Nosek, J., and Fukuhara, H. (1997) Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis, J. Biol. Chem., 272, 3049–3056.

    Article  CAS  PubMed  Google Scholar 

  47. Kapeller, I., Milman, N., Yaffe, N., and Shlomai, J. (2011) Interaction of a replication initiator with histone H1-like proteins remodel the condensed mitochondrial genome, J. Biol. Chem., 286, 40566–40574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Melonek, J., Matros, A., Trosch, M., Mock, H. P., and Krupinska, K. (2012) The core of chloroplast nucleoids contains architectural SWIB domain proteins, Plant Cell, 24, 3060–3073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kucej, M., Kucejova, B., Subramanian, R., Chen, X. J., and Butow, R. A. (2008) Mitochondrial nucleoids undergo remodeling in response to metabolic cues, J. Cell Sci., 121, 1861–1868.

    Article  CAS  PubMed  Google Scholar 

  50. Gualberto, J. M., and Kuhn, K. (2014) DNA-binding proteins in plant mitochondria: implications for transcription, Mitochondrion, 19, 323–328.

    Article  CAS  PubMed  Google Scholar 

  51. Wobbe, L., and Nixon, P. J. (2013) The mTERF protein MOC1 terminates mitochondrial DNA transcription in the unicellular green alga Chlamydomonas reinhardtii, Nucleic Acids Res., 41, 6553–6567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tzfati, Y., Abiliovich, H., Avrahami, D., and Shlomai, J. (1995) Universal minicircle sequence binding protein, a CCHC-type zinc finger protein that binds the universal minicircle sequence of trypanosomatids. Purification and characterization, J. Biol. Chem., 270, 21339–21345.

    Article  CAS  PubMed  Google Scholar 

  53. Hines, J. C., and Ray, D. S. (2010) A mitochondrial DNA primase is essential for cell growth and kinetoplast DNA replication in Trypanosoma brucei, Mol. Cell. Biol., 30, 1319–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hines, J. C., and Ray, D. S. (2011) A second mitochondrial DNA primase is essential for cell growth and kinetoplast minicircle DNA replication in Trypanosoma brucei, Eukaryot. Cell, 10, 445–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krupinska, K., Oetke, S., Desel, C., Mulisch, M., Schafer, A., Hollmann, J., Kumlehn, J., and Hensel, G. (2014) WHIRLY1 is a major organizer of chloroplast nucleoids, Front. Plant Sci., 5, doi: 10.3389/fpls.2014.00432.

    Google Scholar 

  56. Kobayashi, T., Takahara, M., Miyagishima, S. Y., Kuroiva, H., Sasaki, N., Ohta, N., Matsuzaki, M., and Kuroiva, T. (2002) Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids, Plant Cell, 14, 1579–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, W., Li, G.-W., Chen, C., Xie, X. S., and Zhuang, X. (2011) Chromosome organization by a nucleoid-associated protein in live bacteria, Science, 333, 1445–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takamatsu, C., Umeda, S., Ohsato, T., Ohno, T., Abe, Y., Fukuoh, A., Shinagawa, H., Hamasaki, N., and Kang, D. (2002) Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein, EMBO Rep., 3, 451–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaufman, B. A., Durisic, N., Mativetsky, J. M., Costantino, S., Hancock, M. A., Grutter, P., and Shoubridge, E. A. (2007) The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures, Mol. Biol. Cell, 18, 3225–3236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takusagawa, M., Hayashi, T., Takano, H., and Sakai, A. (2009) Organization of mitochondrial-nucleoids in BY-2 cultured tobacco cells, Cytologia, 74, 329–341.

    Article  CAS  Google Scholar 

  61. Kurashenko, A. V., Samoylova, E. O., Baleva, M. V., Chicherin, I. V., Petrov, D. Y., Kamenski, P. A., and Levitsky, S. A. (2016) Two HMG-domains of yeast mitochondrial protein Abf2p has different affinity to DNA, Vestnik RSMU, 1, 68–72.

    Google Scholar 

  62. Antonicka, H., Sasarman, F., Nishimura, T., Paupe, V., and Shoubridge, E. A. (2013) The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression, Cell Metab., 17, 386–398.

    Article  CAS  PubMed  Google Scholar 

  63. Jourdain, A. A., Koppen, M., Wydro, M., Rodley, C. D., Lightowlers, R. N., Chrzanovska-Lightowlers, Z. M., and Martinou, J.-C. (2013) GRSF1 regulates RNA processing in mitochondrial RNA granules, Cell Metab., 17, 399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brzezniak, L. K., Bijata, M., Szczesny, R. J., and Stepien, P. P. (2011) Involvement of human ELAC2 gene product in 3'-end processing of mitochondrial tRNAs, RNA Biol., 8, 616–626.

    Article  CAS  PubMed  Google Scholar 

  65. Jourdain, A. A., Boehm, E., Maundrell, K., and Martinou, J.-C. (2016) Mitochondrial RNA granules: compartmentalizing mitochondrial gene expression, J. Cell Biol., 212, 611–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Albi, E., and Magni, M. P. V. (2004) The role of intranuclear lipids, Biol. Cell, 96, 657–667.

    Article  CAS  PubMed  Google Scholar 

  67. Zhdanov, R. I., Kern, D., Lorenc, V., and Ibragimova, M. Y. (2015) Lipid and fatty acid profiles of Pseudomonas aurantiaca DNA-bound lipids determined by mass spectrometry, Mikrobiologiya, 84, 50–57.

    CAS  Google Scholar 

  68. Kory, N., Thiam, A.-R., Farese, R. V., and Walther, T. C. (2015) Protein crowding is a determinant of lipid droplet protein composition, Dev. Cell, 34, 1–13.

    Article  Google Scholar 

  69. Chujo, T., Yamazaki, T., and Hirose, T. (2016) Architectural RNAs (arcRNAs): a class of long noncoding RNAs that function as the scaffold of nuclear bodies, Biochim. Biophys. Acta, 1859, 139–146.

    Article  CAS  PubMed  Google Scholar 

  70. Azam, T. A., Iwata, A., Nishimura, A., Ueda, S., and Ishihama, A. (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid, J. Bacteriol., 181, 6361–6370.

    CAS  Google Scholar 

  71. Cavelier, L., Johannisson, A., and Gyllensten, U. (2000) Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR, Exp. Cell Res., 259, 79–85.

    Article  CAS  PubMed  Google Scholar 

  72. Gilkerson, R. W. (2009) Mitochondrial DNA nucleoids determine mitochondrial genetics and dysfunction, Intern. J. Biochem. Cell Biol., 41, 1899–1906.

    Article  CAS  Google Scholar 

  73. Wang, W., Li, G., Chen, C., Xie, S., and Zhuang, X. (2011) Chromosome organization by a nucleoid-associated protein in live bacteria, Science, 333, 1445–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kolesnikov.

Additional information

Original Russian Text © A. A. Kolesnikov, 2016, published in Biokhimiya, 2016, Vol. 81, No. 10, pp. 1322–1331.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.A. The mitochondrial genome. The nucleoid. Biochemistry Moscow 81, 1057–1065 (2016). https://doi.org/10.1134/S0006297916100047

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916100047

Key words

Navigation