Skip to main content
Log in

Fe3O4@Si-NH2 Magnetic Reinforcement of Novel Polybutadiene-Based Polyurea

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Polybutadiene chemical modification to amine terminated polybutadiene, polyurea and magnetic nanocomposite was settled as the aim of current report. In this regard, amine terminated polybutadiene synthesized through a two consecutive oxidation and amination reactions on polybutadiene. In situ polymerization method was used to prepare polybutadiene-based polyurea. Magnetic nanocomposite synthesized with loading 1-3 weight percent of surface modified magnetite (Fe3O4@Si-NH2) nanoparticle in one-pot reaction of amine terminated polybutadiene with toluene diisocyanate. 1H NMR and FT-IR spectroscopy methods were approved correct synthesize of amine functionalized polybutadiene, polyurea and magnetic nanocomposites. Thermal degradation and characteristics investigated using TGA/DTG and DSC techniques; lower degradation rates with improved thermal stabilities and superior thermal properties with wider thermal service range observed especially in 3 weight percent nanocomposite in comparison with pristine polyurea. In addition to, successful nanocomposite synthesis and fine nanoparticle dispersion confirmed by XRD and SEM methods, remarkable chain orderings of magnetic nanocomposite observed. VSM magnetization characterization proved superparamagnetic characteristics of nanocomposites with direct relationship to the magnetic nanoparticle content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Polgar, L.M., Van Duin, M., Broekhuis, A., and Picchioni, F., Macromolecules, 2015, vol. 48, pp. 7096–7105. https://doi.org/10.1021/acs.macromol.5b01422

    Article  CAS  Google Scholar 

  2. Bai, J., Li, H., Shi, Z., and Yin, J., Macromolecules, 2015, vol. 48, pp. 3539–3546. https://doi.org/10.1021/acs.macromol.5b00389

    Article  CAS  Google Scholar 

  3. Okan, M., Aydin, H.M., and Barsbay, M., J. Chem. Technol. Biotechnol., 2019, vol. 94(1), p. 0. https://doi.org/10.1002/jctb.5778

    Article  CAS  Google Scholar 

  4. Trovatti, E., Lacerda, T.M., Carvalho, A.J.F., and Gandini, A., Adv. Mater., 2015, vol. 27, pp. 4. https://doi.org/10.1002/adma.201405801

    Article  CAS  Google Scholar 

  5. Fang, Y., Zhan, M., and Wang, Y., Mater. Des., 2001, vol. 22, pp. 123–127. https://doi.org/10.1016/S0261-3069(00)00052-2

    Article  CAS  Google Scholar 

  6. Berto, P., Grelier, S., and Peruch, F., Macromolecules, 2017, vol. 38, pp. 2–7. https://doi.org/10.1002/marc.201700475

    Article  CAS  Google Scholar 

  7. Nikje, M.M.A. and Hajifatheali, H., J. Elastomers Plast., 2013, vol. 45, pp. 457–469. https://doi.org/10.1177/F0095244312457800

    Article  Google Scholar 

  8. Fainleib, A., Pires, R.V., Lucas, E.F., and Soares, B.G. Polimeros, 2013, vol. 23, pp. 441–450. https://doi.org/10.4322/polimeros.2013.070

    Article  CAS  Google Scholar 

  9. Phinyocheep, P., Phetphaisit, C.W., Derouet, D., Campistron, I., and Brosse, J.C. J. Appl. Polym. Sci,. 2005, vol. 95, pp. 6–15. https://doi.org/10.1002/app.20812

    Article  CAS  Google Scholar 

  10. Berto, P., Pointet, A., Coz, C.L., Grelier, S., and Peruch, F., Macromolecules, 2017, vol. 51, pp. 651–659. https://doi.org/10.1021/acs.macromol.7b02220

    Article  CAS  Google Scholar 

  11. Morita, A., Maughon, B.R., Bielawski, C.W., and Grubbs, R.H., Macromolecules, vol. 33, pp. 6621–6623. https://doi.org/10.1021/ma000013x

    Article  CAS  Google Scholar 

  12. Zhang, Q., Shu, Y., Liu, N., Lu, X., Shu, Y., Wang, X., Mo, H., Xu, and M., Cent. Eur. J. Energ. Mater., 2019, vol. 16, pp. 153–193. https://doi.org/10.22211/cejem/109806

    Article  CAS  Google Scholar 

  13. Gold, B.J., Hovelmann, C.H., Weiss, C., Radulescu, A., Allgaier, J., Pyckhout-Hintzen, W., Wischnewski, A., and Richter, D., Polymer, 2016, vol. 87, pp. 123–128. https://doi.org/10.1016/j.polymer.2016.01.077

    Article  CAS  Google Scholar 

  14. Zhou, Q., Jie, S., Li, B.G., Polymer, 2015, vol. 67, pp. 208–215. https://doi.org/10.1016/j.polymer.2015.04.078

    Article  CAS  Google Scholar 

  15. Quagliano, J., Bocchio, J., and Ross, P., TMS., 2019, vol. 71, pp. 2097–2102. https://doi.org/10.1007/s11837-019-03417-8

    Article  CAS  Google Scholar 

  16. Liu, W., Fang, C., Chen, F., and Qiu, X., ChemSusChem, 2020, vol. 17, pp. 1–11. https://doi.org/10.1002/cssc.202001602

    Article  CAS  Google Scholar 

  17. Bonattini, V.H., Paula, L.A., Jesus, N.A., Tavares, D.C., Nicolella, H.D., Magalhaes, L.G., and Molina, E.F., Polym. Int., 2020, vol. 69, pp. 476–484. https://doi.org/10.1002/pi.5978

    Article  CAS  Google Scholar 

  18. Tripathi, M., Parthasarathy, S., and Roy, P.K., Mater. Today Commun., 2020, vol. 22, ID 100771. https://doi.org/10.1016/j.mtcomm.2019.100771

    Article  CAS  Google Scholar 

  19. Holzworth, K., Jia, Z., Amirkhizi, A.V., Qiao, J., and Nemat-Nasser, S., Polymer, 2013, vol. 54, pp. 3079–3085. https://doi.org/10.1016/j.polymer.2013.03.067

    Article  CAS  Google Scholar 

  20. Iqbal, N., Tripathi, M., Parthasarathy, S., Kumar, D., and Roy, P.K., RSC., 2016, vol. 6, pp. 10706–109717. https://doi.org/10.1039/c6ra23866a

    Article  Google Scholar 

  21. Wu, C., Wang, J., Chang, P., Cheng, H., Yu, Y., Wu, Z., Dong, D., and Zhao, F., Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 464–468. https://doi.org/10.1039/C1CP23332G

    Article  Google Scholar 

  22. Tian, X., Zhang, S., Ma, Y-Q., Luo, Y-L., Xu, F., and Chen, Y-S., Nanotechnology, 2019, vol. 31, ID 195504. https://doi.org/10.1088/1361-6528/ab704c

    Article  CAS  Google Scholar 

  23. Vijayan, P.P., Puglia, D., Vijayan, P.P., Kenny, J.M., and Thomas, S., Mater. Technol., 2013, vol. 32, pp. 171–177. https://doi.org/10.1080/10667857.2016.1161946

    Article  CAS  Google Scholar 

  24. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., and Kumar, R., Prog. Polym. Sci., 2013, vol. 38, pp. 1232–1261. https://doi.org/10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  25. Goes, M.M., Garcia, J.C., Rosa, S.L.F., Mauricio, M.R., and de-Carvalho, G.M., Plast. Rubber Compos., 2019, vol. 49, pp. 1–8. https://doi.org/10.1080/14658011.2019.1666464

    Article  CAS  Google Scholar 

  26. Das, B., Mandal, M., Upadhyay, A., Chattopadhyay, P., and Karak, N., Biomed. Mater., 2013, vol. 8, ID 035003. https://doi.org/10.1088/1748-6041/8/3/035003

    Article  CAS  Google Scholar 

  27. Rahmatpanah, Z., and Nikje, M.M.A., Polym. Bull., 2020, vol. 78, pp. 3651–3666. https://doi.org/10.1007/s00289-020-03288-z

    Article  CAS  Google Scholar 

  28. Rahmatpanah, Z., Nikje, M.M.A., and Dargahi, M. Int. J. Polym. Sci., 2022, ID 2377803. https://doi.org/10.1155/2022/2377803

    Article  CAS  Google Scholar 

  29. Rahmatpanah, Z., and Nikje, M.M.A., Polym. Bull., 2022. https://doi.org/10.1007/s00289-022-04132-2

    Article  Google Scholar 

  30. Nikje, M.M.A., Akbar, R., Ghavidel, R., and Vakili, M., Cell. Polym., 2015, vol. 34, pp. 137–156. https://doi.org/10.1177/026248931503400302

    Article  CAS  Google Scholar 

  31. Zhou, Q., Jie, S., and Li, B.G., Ind. Eng. Chem. Res., 2014, vol. 53, pp. 17884–17893. https://doi.org/10.1021/ie503652g

    Article  CAS  Google Scholar 

  32. Cai, Y., Jiang, J-S., Zheng, B., and Xie, M-R., J. Appl. Polym. Sci., 2012, vol. 127, pp. 1–8. https://doi.org/10.1002/app.36849

    Article  CAS  Google Scholar 

  33. Dalod, A.P.M., Henriksen, L., Grande, T., and Einarsrud, M.A., J. Nanotechnol., 2017, vol. 8, pp. 304-312. https://doi.org/10.3762/bjnano.8.33

    Article  CAS  Google Scholar 

  34. Gomez-Fernandez, S., Ugarte, L., Pena-Rodriguez, C., Zubitur, M., Corcuera, M.A., and Eceiza, A., Appl. Clay Sci., 2016, vol. 123, pp. 109–120. https://doi.org/10.1016/j.clay.2016.01.015

    Article  CAS  Google Scholar 

  35. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Science, 2004, vol. 306, pp. 666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  36. Sung, H.W.F., Rudowicz, C., arXiv.org e-Print Archive. http://arxiv.org/abs/cond-mat/0210657.

  37. Blaney, L., Lehigh University. Lehigh Review, vol. 15, no. 33–81. https://preserve.lehigh.edu/cas-lehighreview-vol-15/5.

Download references

ACKNOWLEDGMENTS

The authors would like to thank Imam Khomeini International University (IKIU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Mohammad Alavi Nikje.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatpanah, Z., Nikje, M.M.A. Fe3O4@Si-NH2 Magnetic Reinforcement of Novel Polybutadiene-Based Polyurea. Russ J Appl Chem 95, 1048–1057 (2022). https://doi.org/10.1134/S1070427222070175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222070175

Keywords:

Navigation