Skip to main content
Log in

Monovalent Thulium. Synthesis and Properties of TmI

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reaction of thulium shavings with iodine at 680°C gave a poorly separable product mixture A, consisting of thulium metal (65%), TmI2 (14%), and TmI (21%). Monovalent thulium iodide could not be isolated in a pure state, but its presence among the products was confirmed, apart from magnetic measurements, by reactions with naphthalene and perylene, which proceed under mild conditions. The reaction of TmI with naphthalene, which takes place at 40°C, affords the trivalent thulium complex with naphthalene dianion, [TmI(C10H8)(DME)3]. The multistep reaction with perylene starts with the formation of the divalent thulium radical anion complex, [(TmI)+(C20H12)(DME)3], and ends in the formation of trivalent thulium complex, [(TmI)2+(C20H12)2(DME)3]. The presence of a radical anion intermediate in the reaction mixture in an early stage was confirmed by ESR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Arnold, P.L., Cloke, F.G.N., and Nixon, J.F., Chem. Commun., 1998, p. 797.

  2. Arnold, P.L., Cloke, F.G.N., Hitchcock, P.B., and Nixon, J.F., J. Am. Chem. Soc., 1996, vol. 118, no. 32, p. 7630.

    Article  CAS  Google Scholar 

  3. Martin, J.D. and Corbett, J.D., Angew. Chem., Int. Ed. Engl., 1995, vol. 34, no. 2, p. 233.

    Article  CAS  Google Scholar 

  4. Bochkarev, M.N., Coord. Chem. Rev., 2004, vol. 248, p. 835.

    Article  CAS  Google Scholar 

  5. Fong, F.K., Cape, J.A., and Wong, E.Y., Phys. Rev., 1966, vol. 151, p. 299.

    Article  CAS  Google Scholar 

  6. Dirscherl, R. and Lee, H.U., J. Chem. Phys., 1980, vol. 73, p. 3831.

    Article  CAS  Google Scholar 

  7. Li, W.-L., Chen, T.-T., Chen, W.-J., et al., Nature Commun., 2021, vol. 12, p. 6467.

    Article  CAS  Google Scholar 

  8. Käning, M., Hitzschke, L., Schalk, B., et al., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 22, p. 224005.

    Article  Google Scholar 

  9. Käning, M., Schalk, B., and Schneidenbach, H., J. Phys. D: Appl. Phys., 2007, vol. 40, p. 3815.

    Article  Google Scholar 

  10. Bochkarev, M.N., Fagin, A.A., and Khoroshenkov, G.V., Russ. Chem. Bull. Int. Ed., 2002, vol. 51, p. 1909.

    Article  CAS  Google Scholar 

  11. Khoroshenkov, G.V., Fagin, A.A., Bochkarev, M.N., et al., Russ. Chem. Bull., 2003, vol. 52, p. 1715.

    Article  CAS  Google Scholar 

  12. Fagin, A.A., Bukhvalova, S.Yu., and Bochkarev, M.N., Russ. J. Coord. Chem., 2022, vol. 48, p. 741. https://doi.org/10.1134/S1070328422110045

    Article  CAS  Google Scholar 

  13. Bochkarev, M.N. and Protchenko, A.P., Prib. Tekh. Eksp., 1990, no. 1, 1, p. 194.

    Google Scholar 

  14. Bochkarev, M.N., Fedushkin, I.L., Fagin, A.A., et al., Angew. Chem., Int. Ed. Engl., 1997, vol. 36, nos. 1–2, p. 133.

    Article  CAS  Google Scholar 

  15. Bochkarev, M.N., Fedushkin, I.L., Fagin, A.A., et al., Chem. Commun., 1997, p. 1783.

  16. Evans, W.J., Allen, N.T., and Ziller, J.W., J. Am. Chem. Soc., 2000, vol. 122, p. 11749.

    Article  CAS  Google Scholar 

  17. Levason, W., Matthews, M.L., Reid, G., et al., Dalton Trans., 2004, p. 51.

  18. Taylor, W.V., Xie, Z.-L., Cool, N.I., et al., Inorg. Chem., 2018, vol. 57, no. 16, p. 10364.

    Article  CAS  PubMed  Google Scholar 

  19. Brown, M.D., Levason, W., Reid, G., et al., Dalton Trans., 2006, p. 5648.

  20. Mashima, K., Nakayama, Y., Nakamura, A., et al., J. Organomet. Chem., 1994, vol. 473, p. 85.

    Article  CAS  Google Scholar 

  21. Münzfeld, L., Schoo, C., Bestgen, S., et al., Nature Commun., 2019, vol. 10, p. 3135.

    Article  Google Scholar 

  22. Segal, B.G., Kaplan, M., and Fraenkel, G.K., J. Chem. Phys., 1965, vol. 43, p. 4191.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the center for collective use Analytical Center of the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, supported by the grant “Provision of the Development of the Material and Technical Infrastructure of Centers for Collective Use” (unique identifier RF–2296.61321X0017, contract number 075-15-2021-670).

Funding

This study was supported by the joint grant of the Russian Science Foundation and the Government of the Nizhny Novgorod Region (project no. 22-23-20149).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Yu. Bukhvalova or M. N. Bochkarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagin, A.A., Bukhvalova, S.Y., Kuropatov, V.A. et al. Monovalent Thulium. Synthesis and Properties of TmI. Russ J Coord Chem 49, 299–303 (2023). https://doi.org/10.1134/S1070328423700525

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423700525

Key words:

Navigation