Skip to main content
Log in

In Situ Modification and Analysis of the Composition and Crystal Structure of a Silicon Target by Ion-Beam Methods

  • ELECTROPHYSICS, ELECTRON AND ION BEAMS, PHYSICS OF ACCELERATORS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The method of Rutherford backscattering (RBS) with channeling is widely used in compositional analysis and structural determination. An experimental process line for in situ ion implantation and RBS spectrometry is presented, and its technical parameters are given. The parameters of a probing beam needed to reach a several-percent error in the study of distribution profiles of impurities and defects are detailed. The resolution of this method was estimated using the spectrum of alpha particles produced in the decay of 239Pu and based on the RBS spectrum from a silicon monocrystal. The implantation of Xe+ ions with an energy of 100 keV into a silicon monocrystal and the RBS analysis of targets in the channeling mode were performed without breach of vacuum conditions. The distribution profiles of implanted atoms and defects in irradiated monocrystals were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. Horodek, K. Siemek, A. G. Kobets, M. Kulik, and I. N. Meshkov, Appl. Surf. Sci. 333, 96 (2015).

    Article  ADS  Google Scholar 

  2. H. Lenka, J. Meersschaut, P. K. Kandaswamy, H. Modarresi, H. Bender, A. Vantomme, and W. Vandervorst, Nucl. Instrum. Methods Phys. Res., Sect. B 331, 69 (2014).

    Google Scholar 

  3. V. C. Kummari, T. Reiner, W. Jiang, F. D. McDaniel, and F. D. Rout, Nucl. Instrum. Methods Phys. Res., Sect. B 332, 28 (2014).

    Google Scholar 

  4. A. Hallén and G. Moschetti, Nucl. Instrum. Methods Phys. Res., Sect. B 332, 172 (2014).

    Google Scholar 

  5. C.-L. Jia and Z.-N. Wei, Phys. B 437, 1 (2014).

    Article  ADS  Google Scholar 

  6. E. Wendler, G. Becker, J. Rensberg, E. Schmidt, S. Wolf, and W. Wesch, Nucl. Instrum. Methods Phys. Res., Sect. B 379, 195 (2016).

    Google Scholar 

  7. A. A. Shemukhin, A. V. Nazarov, Yu. V. Balakshin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 354, 274 (2015).

    Google Scholar 

  8. A. A. Shemukhin, Y. V. Balakshin, V. S. Chernysh, S. A. Golubkov, N. N. Egorov, and A. I. Sidorov, Semiconductors 48, 517 (2014).

    Article  ADS  Google Scholar 

  9. A. A. Shemukhin, Yu. V. Balakshin, A. P. Evseev, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 507 (2017).

    Google Scholar 

  10. S. J. Moloi and M. McPherson, Vacuum 104, 51 (2014).

    Article  ADS  Google Scholar 

  11. H.-Y. Chiang, S.-H. Park, M. Mayer, K. Schmid, M. Balden, U. Boesenberg, R. Jungwirth, G. Falkenberg, T. Zweifel, and W. Petry, J. Alloys Compd. 626, 381 (2015).

    Article  Google Scholar 

  12. R.-Z. Xiao, Z.-S. Wang, X.-B. Yuan, J.-J. Zhou, Z.-L. Mao, H.-S. Su, B. Li, and D.-J. Fu, Nucl. Instrum. Methods Phys. Res., Sect. B 384, 106 (2016).

    Google Scholar 

  13. O. S. Odutemowo, J. B. Malherbe, C. C. Theron, E. G. Njoroge, and E. Wendler, Vacuum 126, 101 (2016).

    Article  ADS  Google Scholar 

  14. M. Albéric, K. Müller, L. Pichon, Q. Lemasson, B. Moignard, C. Pacheco, E. Fontan, and I. Reiche, Talanta 137, 100 (2015).

    Article  Google Scholar 

  15. H. C. Santos, N. Added, T. F. Silva, and C. L. Rodrigues, Nucl. Instrum. Methods Phys. Res., Sect. B 345, 42 (2015).

    Google Scholar 

  16. C. Fourdrin, S. P. Camagna, C. Pacheco, M. Radepont, Q. Lemasson, B. Moignard, L. Pichon, B. Bourgeois, and V. Jeammet, Microchem. J. 126, 446 (2016).

    Article  Google Scholar 

  17. I. Ortega-Feliu, F. J. Ager, C. Roldán, M. Ferretti, D. Juanes, S. Scrivano, M. A. Respaldiza, L. Ferrazza, I. Traver, and M. L. Grilli, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 318 (2017).

    Google Scholar 

  18. L. Beck, E. Alloin, A. Vigneron, I. Caffy, and I. Klein, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 93 (2017).

  19. Q. Q. Wu, J. J. Zhu, M. T. Liu, Z. Zhou, Z. An, W. Huang, Y. H. He, and D. Y. Zhao, Nucl. Instrum. Methods Phys. Res., Sect. B 296, 1 (2013).

    Google Scholar 

  20. M. Noun, M. Roumie, T. Calligaro, B. Nsouli, R. Brunetto, D. Baklouti, L. d’Hendecourt, and S. Della-Negra, Nucl. Instrum. Methods Phys. Res., Sect. B 306, 261 (2013).

    Google Scholar 

  21. M. Q. Ren, X. Ji, S. K. Vajandar, Z. H. Mi, A. Hoi, T. Walczyk, J. A. van Kan, A. A. Bettio, F. Watt, and T. Osipowicz, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 15 (2017).

    Google Scholar 

  22. J. Lacroix, J. Lao, J.-M. Nedelec, and E. Jallot, Nucl. Instrum. Methods Phys. Res., Sect. B 306, 153 (2013).

    Google Scholar 

  23. http://www.nndc.bnl.gov/chart/decaysearchdirect.jsp ?nuc=239PU&unc=nds.

  24. https://www.originlab.com.

  25. M. Nastasi, J. W. Mayer, and Y. Wang, Ion Beam Analysis: Fundamentals and Applications (CRC Press, London, 2015).

    Google Scholar 

  26. http://www.exphys.uni-linz.ac.at/stopping/.

  27. V. V. Titov, Implantation of Fast Ions into Monocrystals (IEA, Moscow, 1978).

    Google Scholar 

  28. J. J. Ph. Elich, H. E. Roosendaal, and D. Onderdelinden, Radiat. Eff. Defects Solids 10, 175 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Balakshin.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakshin, Y.V., Shemukhin, A.A., Nazarov, A.V. et al. In Situ Modification and Analysis of the Composition and Crystal Structure of a Silicon Target by Ion-Beam Methods. Tech. Phys. 63, 1861–1867 (2018). https://doi.org/10.1134/S106378421812023X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421812023X

Navigation