Skip to main content
Log in

Theoretical and experimental study of the electronic structure of tin dioxide

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic structure of tin dioxide has been theoretically studied within the linearized augmented plane wave method using the Wien2k program package. The total and local partial electron densities of states have been calculated. The X-ray emission K-spectrum of oxygen has been calculated. The X-ray absorption spectra of the tin M 4,5-edge and oxygen K-edge have been calculated by simulating the supercell and core hole. The calculated results have been compared with the experimental data obtained using synchrotron radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Reimann and M. Steube, Solid State Commun. 105, 649 (1998).

    Article  ADS  Google Scholar 

  2. K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films 102, 1 (1983).

    Article  ADS  Google Scholar 

  3. S. U. Lee, W. S. Choi, and B. Hong, Phys. Scr., T 129, 312 (2007).

    Article  ADS  Google Scholar 

  4. R. S. Niranjan, Y. K. Hwang, D.-K. Kim, S. H. Jhung, J.-S. Chang, and I. S. Mulla, Mater. Chem. Phys. 92, 384 (2005).

    Article  Google Scholar 

  5. N. S. Subramanian, B. Santhi, S. Sundareswaran, and K. S. Venkatakrishnan, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 36, 131 (2006).

    Article  Google Scholar 

  6. E. P. Domashevskaya, S. V. Ryabtsev, Yu. A. Yurakov, O. A. Chuvenkova, V. M. Kashkarov, S. Yu. Turishchev, S. B. Kushev, and A. N. Lukin, Thin Solid Films 515, 6350 (2007).

    Article  ADS  Google Scholar 

  7. E. P. Domashevskaya, O. A. Chuvenkova, S. V. Ryabtsev, Yu. A. Yurakov, V. M. Kashkarov, A. V. Shchukarev, and S. Yu. Turishchev, Thin Solid Films 537, 137 (2013).

    Article  ADS  Google Scholar 

  8. A. Vomiero, M. Ferroni, E. Comini, G. Faglia, and G. Sberveglieri, Nano Lett. 7, 3553 (2007).

    Article  ADS  Google Scholar 

  9. P. Blanca, Phys. Rev. B: Condens. Matter 48, 15712 (1993).

    Article  ADS  Google Scholar 

  10. G. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova, and N. H. Hong, Phys. Rev. B: Condens. Matter 85, 165319 (2012).

    Article  ADS  Google Scholar 

  11. Y. Duan, Phys. Rev. B: Condens. Matter 77, 045332 (2008).

    Article  ADS  Google Scholar 

  12. H.-J. Ahn, H.-C. Choi, K.-W. Park, S.-B. Kim, and Y.-E. Sung, J. Phys. Chem. B 108, 9815 (2004).

    Article  Google Scholar 

  13. S. O. Kucheyev, T. F. Baumann, P. A. Sterne, Y. M. Wang, T. van Buuren, A. V. Hamza, L. J. Terminello, and T. M. Willey, Phys. Rev. B: Condens. Matter 72, 035404 (2005).

    Article  ADS  Google Scholar 

  14. T. Nagata, O. Bierwagen, M. E. White, M.-Y. Tsai, and J. S. Speck, J. Appl. Phys. 107, 033707 (2010).

    Article  ADS  Google Scholar 

  15. C. McGuinness, C. B. Stagarescu, P. J. Ryan, J. E. Downes, D. Fu, K. E. Smith, and R. G. Egdell, Phys. Rev. B: Condens. Matter 68, 165104 (2003).

    Article  ADS  Google Scholar 

  16. M. S. Moreno, R. F. Egerton, J. J. Rehr, and P. A. Midgley, Phys. Rev. B: Condens. Matter 71, 035103 (2005).

    Article  ADS  Google Scholar 

  17. http://www.alfa.com.

  18. http://database.iem.ac.ru/mincryst/.

  19. K. Schwarz and P. Blaha, Comput. Mater. Sci. 28, 259 (2003).

    Article  Google Scholar 

  20. A. Rahman, K. Sköld, C. Pclizzari, S. K. Sinha, and H. Flotow, Phys. Rev. B: Solid State 14, 3630 (1976).

    Article  ADS  Google Scholar 

  21. J. P. Perdew and W. Yue, Phys. Rev. B: Condens. Matter 33, 8800 (1986).

    Article  ADS  Google Scholar 

  22. G. Duscher, R. Buczkoa, S. J. Pennycooka, and S. T. Pantelides, Ultramicroscopy 86, 355 (2001).

    Article  Google Scholar 

  23. P. Mori-Sanchez, A. J. Cohen, and W. Yang, Phys. Rev. Lett. 100, 146401 (2008).

    Article  ADS  Google Scholar 

  24. A. Schleife, J. B. Varley, F. Fuchs, C. Rödl, F. Bechstedt, P. Rinke, A. Janotti, and C. G. Van de Walle, Phys. Rev. B: Condens. Matter 83, 035116 (2011).

    Article  ADS  Google Scholar 

  25. J. M. Themlin, R. Sporken, J. Darville, R. Caudano, J. M. Gilles, and R. L. Johnson, Phys. Rev. B: Condens. Matter 42, 11914 (1990).

    Article  ADS  Google Scholar 

  26. P. L. Gobby and G. J. Lapeyre, in Proceedings of the XIII International Conference on Physics of Semiconductors, Rome, August 30–September 3, 1976.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Manyakin.

Additional information

Original Russian Text © S.I. Kurganskii, M.D. Manyakin, O.I. Dubrovskii, O.A. Chuvenkova, S.Yu. Turishchev, E.P. Domashevskaya, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 9, pp. 1690–1695.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurganskii, S.I., Manyakin, M.D., Dubrovskii, O.I. et al. Theoretical and experimental study of the electronic structure of tin dioxide. Phys. Solid State 56, 1748–1753 (2014). https://doi.org/10.1134/S1063783414090170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414090170

Keywords

Navigation