Skip to main content
Log in

Magnetotransport characteristics of strained La0.7Sr0.3MnO3 epitaxial manganite films

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The electrical and magnetic characteristics of La0.7Sr0.3MnO3 (LSMO) epitaxial manganite films are investigated by different methods under conditions when the crystal structure is strongly strained as a result of mismatch between the lattice parameters of the LSMO crystal and the substrate. Substrates with lattice parameters larger and smaller than the nominal lattice parameter of the LSMO crystal are used in experiments. It is shown that the behavior of the temperature dependence of the electrical resistance for the films in the low-temperature range does not depend on the strain of the film and agrees well with the results obtained from the calculations with allowance made for the interaction of electrons with magnetic excitations in the framework of the double-exchange model for systems with strongly correlated electronic states. Investigations of the magneto- optical Kerr effect have revealed that an insignificant (0.3%) orthorhombic distortion of the cubic lattice in the plane of the NdGaO3(110) substrate leads to uniaxial anisotropy of the magnetization of the film, with the easy-magnetization axis lying in the substrate plane. However, LSMO films on substrates (((LaAlO3)0.3+(Sr2AlTaO6)0.7)(001)) ensuring minimum strain of the films exhibit a biaxial anisotropy typical of cubic crystals. The study of the ferromagnetic resonance lines at a frequency of 9.76 GHz confirms the results of magnetooptical investigations and indicates that the ferromagnetic phase in the LSMO films is weakly inhomogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Izyumov and Yu. N. Skryabin, Usp. Fiz. Nauk 171(2), 121 (2001) [Phys.-Usp. 44 (2), 109 (2001)].

    Article  Google Scholar 

  2. W. Prellier, Ph. Lecoeur, and B. Mercey, J. Phys.: Condens. Matter 13, R915 (2001).

    Article  ADS  Google Scholar 

  3. A.-M. Haghiri-Cosnet and J. P. Renard, J. Phys. D: Appl. Phys. 36, R127 (2003).

    Article  ADS  Google Scholar 

  4. M. Ziese, Rep. Prog. Phys. 65, 143 (2002).

    Article  ADS  Google Scholar 

  5. P. Dey, T. K. Nath, and A. Tarapher, Appl. Phys. Lett. 91, 012511 (2007).

    Google Scholar 

  6. F. Tsui, M. C. Smoak, T. K. Nath, and C. B. Eom, Appl. Phys. Lett. 76, 2421 (2000).

    Article  ADS  Google Scholar 

  7. Y. P. Lee, S. Y. Park, Y. H. Hyun, and J. B. Kim, Phys. Rev. B: Condens. Matter 73, 224413 (2006).

    Google Scholar 

  8. Yan Wu, Y. Suzuki, U. Rüdiger, J. Yu, A. D. Kent, T. K. Nath, and C. B. Eom, Appl. Phys. Lett. 75, 2295 (1999).

    Article  Google Scholar 

  9. M. Bibes, S. Valencia, L. Balcells, B. Martĭnez, J. Fontcuberta, M. Wojcik, S. Nadolski, and E. Jedryka, Phys. Rev. B: Condens. Matter 66, 134416 (2002).

    Google Scholar 

  10. H. Y. Hwang, T. T. M. Palstra, S.-W. Cheong, and B. Batlogg, Phys. Rev. B: Condens. Matter 52, 15046 (1995).

    Google Scholar 

  11. A. J. Millis, T. Darling, and A. Migliori, J. Appl. Phys. 83, 1588 (1998).

    Article  ADS  Google Scholar 

  12. M. C. Martin, G. Shirane, Y. Endoh, K. Hirota, Y. Moritomo, and Y. Tokura, Phys. Rev. B: Condens. Matter 53, 14285 (1996).

    ADS  Google Scholar 

  13. Yu. A. Boĭkov, T. Claeson, and V. A. Danilov, Fiz. Tverd. Tela (St. Petersburg) 47(12), 2189 (2005) [Phys. Solid State 47 (12), 2281 (2005)].

    Google Scholar 

  14. G. J. Snyder, R. Hiskes, S. DiCarolis, M. R. Beasley, and T. H. Geballe, Phys. Rev. B: Condens. Matter 53, 14434 (1996).

    ADS  Google Scholar 

  15. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong Phys. Rev. Lett. 75, 3336 (1995).

    Article  ADS  Google Scholar 

  16. Yu. A. Boĭkov and V. A. Danilov, Fiz. Tverd. Tela (St. Petersburg) 50(1), 92 (2008) [Phys. Solid State 50 (1), 95 (2008)].

    Google Scholar 

  17. I. K. Bdikin, P. B. Mozhaev, G. A. Ovsyannikov, F. V. Komissinskiĭ, I. M. Kotelyanskiĭ, and E. I. Raksha, Fiz. Tverd. Tela (St. Petersburg) 43(9), 1548 (2001) [Phys. Solid State 43 (9), 1611 (2001)].

    Google Scholar 

  18. M. J. Calderon and L. Brey, Phys. Rev. B: Condens. Matter 64, 140403 (2001).

    Google Scholar 

  19. N. G. Bebenin, R. I. Zainullina, V. V. Mashkautsan, V. V. Ustinov, and Ya. M. Mukovskii, Phys. Rev. B: Condens. Matter 69, 104434 (2004).

    Google Scholar 

  20. B. C. Chakoumakos, D. G. Schlom, M. Urbanik, and J. Luine, J. Appl. Phys. 83, 1979 (1998).

    Article  ADS  Google Scholar 

  21. Y. Suzuki, H. Y. Hwang, S.-W. Cheong, T. Siegrist, R. B. van Dover, A. Asamitsu, and Y. Tokura, J. Appl. Phys. 83, 7064 (1998).

    Article  ADS  Google Scholar 

  22. K. Steenbeck and R. Hiergeist, Appl. Phys. Lett. 75, 17778 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Ovsyannikov.

Additional information

Original Russian Text © G.A. Ovsyannikov, A.M. Petrzhik, I.V. Borisenko, A.A. Klimov, Yu.A. Ignatov, V.V. Demidov, S.A. Nikitov, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 1, pp. 56–64.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovsyannikov, G.A., Petrzhik, A.M., Borisenko, I.V. et al. Magnetotransport characteristics of strained La0.7Sr0.3MnO3 epitaxial manganite films. J. Exp. Theor. Phys. 108, 48–55 (2009). https://doi.org/10.1134/S1063776109010075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109010075

PACS numbers

Navigation