Skip to main content
Log in

Neutron time-of-flight reflectometer GRAINS with horizontal sample plane at the IBR-2 reactor: Possibilities and prospects

  • Apparatus
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A new time-of-flight neutron reflectometer GRAINS with a horizontal sample plane (vertical scattering plane) has recently been put into operation at the pulsed reactor IBR-2 (JINR, Dubna). The scattering geometry applied makes it possible to carry out complex studies of nanostructured interfaces in solid and liquid states by measuring the specular reflectivity and the intensity of diffuse scattering of thermal neutrons from open surfaces and hidden interlayer boundaries, including solid-liquid interfaces, over a wide momentum transfer range. The classical analysis of specular reflectivity allows one to determine the scattering length density profile in the object under study in a direction perpendicular to the interface for a thickness of ~100 nm with a resolution of 1 nm. The analysis of off-specular (diffuse) neutron scattering makes it possible to characterize lateral correlations on surfaces and interlayer boundaries. The paper summarizes the first experience in the operation of the GRAINS reflectometer. The instrument characteristics are presented together with the possibilities for experiments with solid and liquid samples illustrated with simple systems. Further steps for the development of the reflectometer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. F. Taylor, R. K. Thomas, and J. Penfold, Adv. Colloid Interface Sci. 132, 69 (2007).

    Article  Google Scholar 

  2. J. Penfold, R. K. Thomas, and H.-H. Shen, Soft Matter 8, 578 (2012).

    Article  ADS  Google Scholar 

  3. J. Penfold and R. K. Thomas, Curr. Opin. Colloid Interface Sci. 19, 198 (2014).

    Article  Google Scholar 

  4. R. K. Thomas and J. Penfold, Langmuir 31, 7440 (2015).

    Article  Google Scholar 

  5. J. Penfold and R. K. Thomas, Ann. Rep. Prog. Chem. C 106, 14 (2010).

    Article  Google Scholar 

  6. J. R. Lu, X. B. Zhao, and M. Yaseen, Curr. Opin. Colloid Interface Sci. 12, 9 (2007).

    Article  Google Scholar 

  7. T. Nylander, R. A. Campbell, P. Vandoolaeghe, et al., Biointerphases 3, 2 (2008).

    Article  Google Scholar 

  8. X. B. Zhao, F. Pan, and J. R. Lu, J. R. Soc. Interface 6, S659 (2009).

    Article  Google Scholar 

  9. G. Fragneto, Eur. Phys. J. Special Topics 213, 327 (2012).

    Article  ADS  Google Scholar 

  10. A. Junghans, E. B. Watkins, R. D. Barker, et al., Biointerphases 10, 019014 (2015).

    Article  Google Scholar 

  11. A. Vorobiev, J. Major, H. Dosch, et al., Phys. Rev. Lett. 93, 267203 (2004).

    Article  ADS  Google Scholar 

  12. K. Theis-Bröhl, P. Gutfreund, A. Vorobiev, et al., Soft Matter 11, 4695 (2015).

    Article  ADS  Google Scholar 

  13. M. V. Avdeev, V. I. Petrenko, I. V. Gapon, et al., Appl. Surf. Sci. 352, 49 (2012).

    Article  ADS  Google Scholar 

  14. D. M. Itkis, J. J. Velasco-Velez, A. Knop-Gericke, et al., ChemElectroChem 2, 1427 (2015).

    Article  Google Scholar 

  15. V. L. Aksenov and Yu. V. Nikitenko, Crystallogr. Rep. 52 (3), 540 (2007).

    Article  ADS  Google Scholar 

  16. A. K. Radzhabov, G. P. Gordeev, L. A. Aksel’rod, et al., Crystallogr. Rep. 52 (3), 561 (2007).

    Article  ADS  Google Scholar 

  17. A. K. Radzhabov, G. P. Gordeev, I. M. Lazebnik, et al., Physica B: Cond. Matter 397 (1–2), 156 (2007).

    Article  ADS  Google Scholar 

  18. V. S. Litvin, V. A. Trunov, A. P. Bulkin, et al., Poverkhnost’: Rentgen., Sinkhrotron., Neitr. Issled., No. 11, 3 (2010).

    Google Scholar 

  19. V. S. Litvin, A. A. Alekseev, R. A. Sadykov, et al., J. Phys. Conf. Ser. 340, 012032 (2012).

    Article  Google Scholar 

  20. M. V. Avdeev, V. I. Bodnarchuk, V. V. Lauter-Pasyuk, et al., J. Phys. Conf. Ser. 251, 012060 (2010).

    Article  Google Scholar 

  21. http://ibr-2.jinr.ru/

  22. S. Kulikov and E. Shabalin, J. Phys. Conf. Ser. 351 (1), 012023 (2012).

    Article  Google Scholar 

  23. V. V. Ananiev, A. Belyakov, M. Bulavin, et al., Nucl. Instrum. Methods Phys. Res. A 320, 70 (2014).

    Article  Google Scholar 

  24. V. D. Anan’ev, A. A. Belyakov, M. B. Bulavin, et al., Tech. Phys. 59 (2), 283 (2014).

    Article  Google Scholar 

  25. A. V. Belushkin, A. A. Bogdzel’, V. V. Zhuravlev, et al., Phys. Solid State 52 (5), 1025 (2010).

    Article  ADS  Google Scholar 

  26. S. A. Kulikov and V. I. Prikhodko, Phys. Part. Nucl. 47 (4), 702 (2016).

    Article  Google Scholar 

  27. T. B. Petukhova and A. S. Kirilov, Report No. R10-2006-27 (Joint Institute for Nuclear Research, Dubna, 2006).

    Google Scholar 

  28. A. S. Kirilov, S. M. Murashkevich, R. Yu. Okulov, and T. B. Petukhova, Prib. Tekh. Eksp., No. 1, 46 (2009).

    Google Scholar 

  29. A. S. Kirilov, Phys. Part. Nucl. Lett. 13 (1), 132 (2016).

    Article  MathSciNet  Google Scholar 

  30. A. Nelson, J. Appl. Crystallogr. 39, 273 (2006).

    Article  Google Scholar 

  31. W. Kern and D. Puotinen, RCA Rev. 31, 187 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Avdeev.

Additional information

Original Russian Text © M.V. Avdeev, V.I. Bodnarchuk, V.I. Petrenko, I.V. Gapon, O.V. Tomchuk, A.V. Nagorny, V.A. Ulyanov, L.A. Bulavin, V.L. Aksenov, 2017, published in Kristallografiya, 2017, Vol. 62, No. 6, pp. 1014–1021.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeev, M.V., Bodnarchuk, V.I., Petrenko, V.I. et al. Neutron time-of-flight reflectometer GRAINS with horizontal sample plane at the IBR-2 reactor: Possibilities and prospects. Crystallogr. Rep. 62, 1002–1008 (2017). https://doi.org/10.1134/S1063774517060025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774517060025

Navigation