Skip to main content
Log in

Advances in Developmental Genetics and Achievements in Assisted Reproductive Technology

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Experimental embryology achievements in the century resulted in the birth of the first child conceived artificially. Besides its obvious social significance, the successful solution of the “test-tube babies” provided also the unique chance for direct inspection of human embryos growing in vitro at their earlier stages. New technologies applied for human gametes and earlier embryos studies, combined with high resolution capacities of modern cytogenetic and molecular methods, helped a lot in elaboration of efficient algorithms for assisted reproductive technologies (ART) and also provided a solid background for illumination of many genetic problems of human development before implantation. The later include input of chromosome aberrations and genome imprinting in pathology of early human development, cytogenetic and molecular mechanisms of the primary embryonic differentiation, genome epigenetic changes from fertilization through cleavage and blastulation, and identification of genes responsible for early development and differentiation. Conspicuous achievements in ART also include the creation of three parental embryos as a new step for the treatment of mitochondrial diseases, elaboration of karyomapping technique amenable for the diagnostics of both chromosomal and genetic pathology, and participation of paternal mitochondria delivered by the sperm in human development. A new era in human development genetics and ART was recently mitigated by the genome editing technique. The necessity of strict regulations for the safe implementation of genome editing in human embryonic development has been stressed. The areas of special attention include all studies of genome editing, production of artificial gametes, growing of chimera embryos for the purposes of organ and tissue transplantation, etc. Conspicuous delay of Russian science in the field of human developmental biology and experimental embryology and the necessity of its urgent support from both the fundamental sciences and clinical medicine have to be stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lukin, V.A., Leonov, B.V., Kalinina, E.A., et al., Successful completion of pregnancy after fertilization of eggs in vitro and transfer of embryos into the woman’s uterus, Akush. Ginekol. (Moscow), 1988, vol. 644, pp. 38–41.

    Google Scholar 

  2. Nikitin, A.I., Kitaev, E.M., Savitskii, G.A., et al., In vitro fertilization in humans, followed by successful embryo transplantation and the birth of a child, Arkh. Anat., Gistol. Embriol., 1987, vol. 9, no. 10, pp. 39–43.

    Google Scholar 

  3. Kushnir, V.A., Barad, D.H., Albertini, D.F., et al., Systematic review of worldwide trends in assisted re-productive technology 2004–2013, Reprod. Biol. Endocrinol., 2017, vol. 15, no. 1, p. 6. https://doi.org/10.1186/s12958-016-0225-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Registr ART, Report 2016. http://rahr.ru/d_registr_otchet/RegistrART2016.pdf. Accessed April, 22, 2019.

  5. Imudia, A.N. and Plosker, S., The past, present, and future of preimplantation genetic testing, Clin. Lab. Med., 2016, vol. 36, no. 2, pp. 385–399. https://doi.org/10.1016/j.cll.2016.01.012

    Article  PubMed  Google Scholar 

  6. SenGupta, S.B., Dhanjal, S., and Harper, J.C., Quality control standards in PGD and PGS, Reprod. Biomed. Online, 2016, vol. 32, no. 3, pp. 263–270. https://doi.org/10.1016/j.rbmo.2015.11.020

    Article  CAS  PubMed  Google Scholar 

  7. Sermon, K., Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy, Expert. Rev. Mol. Diagn., 2017, vol. 17, no. 1, pp. 71–82. https://doi.org/10.1080/14737159.2017.1262261

    Article  CAS  PubMed  Google Scholar 

  8. Handyside, A.H., Harton, G.L., Mariani, B., et al., Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes, J. Med. Genet., 2010, vol. 47, no. 10, pp. 651–658. https://doi.org/10.1136/jmg.2009.069971

    Article  PubMed  Google Scholar 

  9. Griffin, D.K. and Ogur, C., Chromosomal analysis in IVF: just how useful is it?, Reproduction, 2018, vol. 156, no. 1, pp. F29–F50. https://doi.org/10.1530/REP-17-0683

    Article  CAS  PubMed  Google Scholar 

  10. Baranov, V.S. and Kuznetsova, T.V., Tsitogenetika embrional’nogo razvitiya cheloveka: nauchno-prakticheskie aspekty (Cytogenetics of Human Embryonic Development: Scientific and Practical Aspects), St. Petersburg: N-L, 2007.

  11. Lebedev, I.N., Cytogenetics of human embryonic development: historical aspects and modern concepts, in Molekulyarno-biologicheskie tekhnologii v meditsinskoi praktike (Molecular Biological Technologies in Medical Practice), Novosibirsk: Al’fa-Vista N, 2008, issue 12, pp. 127—140.

  12. Chiryaeva, O.G., Pendina, A.A., Tikhonov, A.V., et al., Comparative analysis of karyotype abnormalities in a pregnancy loss that happened naturally and with the use of assisted reproductive technologies, Zh. Akush. Zhen. Bolezn., 2012, vol. 61, no. 3, pp. 132–140. https://doi.org/10.1159/000446099

    Article  Google Scholar 

  13. Pendina, A.A., Efimova, O. A., Chiryaeva, O.G., et al., A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years, J. Assist. Reprod. Genet., 2014, vol. 31, no. 2, pp. 149–155. https://doi.org/10.1007/s10815-013-0148-1

    Article  PubMed  Google Scholar 

  14. Wu, T., Yin, B., Zhu, Y., et al., Molecular cytogenetic analysis of early spontaneous abortions conceived from varying assisted reproductive technology procedures, Mol. Cytogenet., 2016, vol. 9, p. 79. https://doi.org/10.1186/s13039-016-0284-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCoy, R.C., Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm, Trends Genet., 2017, vol. 33, no. 7, pp. 448–463. https://doi.org/10.1016/j.tig.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Su, Y., Li, J.J., Wang, C., et al., Aneuploidy analysis in day 7 human blastocysts produced by in vitro fertilization, Reprod. Biol. Endocrinol., 2016, vol. 14, no. 20, p. 1. https://doi.org/10.1186/s12958-016-0157-x

    Article  CAS  Google Scholar 

  17. Munné, S., Blazek, J., Large, M., et al., Detailed investigation into the cytogenetic constitution and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing, Fertil. Steril., 2017, vol. 108, no. 1, pp. 62–71. https://doi.org/10.1016/j.fertnstert.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  18. Lee, A. and Kiessling, A.A., Early human embryos are naturally aneuploid—can that be corrected?, J. Assist. Reprod. Genet., 2017, vol. 34, no. 1, pp. 15–21. https://doi.org/10.1007/s10815-016-0845-7

    Article  PubMed  Google Scholar 

  19. Dyban, A.P. and Baranov, V.S., Cytogenetics of Mammalian Embryonic Development, Oxford: Clarendon Press, 1987.

    Google Scholar 

  20. Taylor, T.H., Gitlin, S.A., Patrick, J.L., et al., The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans, Hum. Reprod. Update, 2014, vol. 20, no. 4, pp. 571–581. https://doi.org/10.1093/humupd/dmu016

    Article  CAS  PubMed  Google Scholar 

  21. Vázquez-Diez, C. and FitzHarris, G. Causes and consequences of chromosome segregation error in preimplantation embryos, Reproduction, 2018, vol. 155, no. 1, pp. R63–R76. https://doi.org/10.1530/REP-17-0569

    Article  PubMed  Google Scholar 

  22. van de Werken, C., Avo, SantosM., Laven, J.S., et al., Chromosome segregation regulation in human zygotes: altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex, Hum. Reprod., 2015, vol. 30, no. 10, pp. 2275–2291. https://doi.org/10.1093/humrep/dev186

    Article  CAS  PubMed  Google Scholar 

  23. Babariya, D., Fragouli, E., Alfarawati, S., et al., The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos, Hum. Reprod., 2017, vol. 32, no. 12, pp. 2549–2560. https://doi.org/10.1093/humrep/dex324

    Article  CAS  PubMed  Google Scholar 

  24. Treff, N.R. and Franasiak, J.M., Detection of segmental aneuploidy and mosaicism in the human preimplantation embryo: technical considerations and limitations, Fertil. Steril., 2017, vol. 107, no. 1, pp. 27–31. https://doi.org/10.1016/j.fertnstert.2016.09.039

    Article  PubMed  Google Scholar 

  25. Sachdev, N.M., Maxwell, S.M., Besser, A.G., and Grifo, J.A., Diagnosis and clinical management of embryonic mosaicism, Fertil. Steril., 2017, vol. 107, no. 1, pp. 6–11. https://doi.org/10.1016/j.fertnstert.2016.10.006

    Article  PubMed  Google Scholar 

  26. Gleicher, N. and Orvieto, R., Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review, J. Ovarian Res., 2017, vol. 10, no. 1, p. 21. https://doi.org/10.1186/s13048-017-0318-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Victor, A.R., Griffin, D.K., Brake, A.J., et al., Assessment of aneuploidy concordance between clinical trophectoderm biopsy and blastocyst, Hum. Reprod., 2019, vol. 34, no. 1, pp. 181–192. https://doi.org/10.1093/humrep/dey327

    Article  PubMed  Google Scholar 

  28. Esfandiari, N., Bunnell, M.E., and Casper, R.F., Human embryo mosaicism: did we drop the ball on chromosomal testing?, J. Assist. Reprod. Genet., 2016, vol. 33, no. 11, pp. 1439—1444.

    Article  Google Scholar 

  29. Skryabin, N.A., Lebedev, I.N., Artyukhova, V.G., et al., Molecular karyotyping of cell-free DNA from blastocoele fluid as a basis for noninvasive preimplantation genetic screening of aneuploidy, Russ. J. Genet., 2015, vol. 51, no. 11, pp. 1123–1128. https://doi.org/10.1134/S1022795415110150

    Article  CAS  Google Scholar 

  30. Tšuiko, O., Zhigalina, D.I., Jatsenko, T., et al., Karyotype of the blastocoel fluid demonstrates low concordance with both trophectoderm and inner cell mass, Fertil. Steril., 2018, vol. 109, no. 6, pp. 1127–1134. https://doi.org/10.1016/j.fertnstert.2018.02.008

    Article  PubMed  Google Scholar 

  31. Bolton, H., Graham, S.J.L., van der Aa, N., et al., Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential, Nat. Commun., 2016, vol. 7, p. 11165. https://doi.org/10.1038/ncomms11165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kushnir, V.A., Darmon, S.K., Barad, D.H., and Gleicher, N., Degree of mosaicism in trophectoderm does not predict pregnancy potential: a corrected analysis of pregnancy outcomes following transfer of mosaic embryos, Reprod. Biol. Endocrinol., 2018, vol. 16, no. 1, p. 6. https://doi.org/10.1186/s12958-018-0322-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Position Statement on Chromosome Mosaicism and Preimplantation Aneuploidy Testing at the Blastocyst Stage, Newsletter, July 19, 2016. http://www.pgdis.org/docs/newsletter_071816.html.

  34. COGEN Position Statement on Chromosomal Mosaicism Detected in Preimplantation Blastocyst Biopsies. https://ivf-worldwide.com/cogen/general/cogen-statement.html.

  35. Handyside, A.H., Live births following karyomapping—a “key” milestone in the development of preimplantation genetic diagnosis, Reprod. Biomed. Online, 2015, vol. 31, no. 3, pp. 307–308. https://doi.org/10.1016/j.rbmo.2015.07.003

    Article  PubMed  Google Scholar 

  36. Natesan, S.A., Handyside, A.H., Thornhill, A.R., et al., Live birth after PGD with confirmation by a comprehensive approach (karyomapping) for simultaneous detection of monogenic and chromosomal disorders, Reprod. Biomed. Online, 2014, vol. 29, no. 5, pp. 600–605. https://doi.org/10.1016/j.rbmo.2014.07.007

    Article  PubMed  Google Scholar 

  37. Ferguson-Smith, A. and Bourc’his, D., The discovery and importance of genomic imprinting, eLife, 2018, vol. 7. e 2368. https://doi.org/10.7554/eLife.42368

  38. Sazhenova, E.A. and Lebedev, I.N., Cytogenetic and epigenetic aspects of hydatidiform moles, in Molekulyarno-biologicheskie tekhnologii v meditsinskoi praktike (Molecular Biological Technologies in Medical Practice), Novosibirsk: Al’fa-Vista, 2008, issue 12, pp. 151–161.

  39. Lepshin, M.V., Sazhenova, E.A. and Lebedev, I.N., Multiple epimutations in imprinted genes in the human genome and congenital disorders, Russ. J. Genet., 2014, vol. 50, no. 3, pp. 221–236. https://doi.org/10.1134/S1022795414030053

    Article  CAS  Google Scholar 

  40. Sazhenova, E.A., Nikitina, T.V., Skryabin, N.A., et al., Epigenetic status of imprinted genes in placenta during recurrent pregnancy loss, Russ. J. Genet., 2017, vol. 53, no. 3, pp. 376–387. https://doi.org/10.1134/S1022795417020090

    Article  CAS  Google Scholar 

  41. Huntriss, J., Balen, A.H., Sinclair, K.D., et al., on behalf of the Royal College of Obstetricians and Gynaecologists, Epigenetics and Reproductive Medicine. Scientific Impact Paper no. 57, BJOG, 2018, vol. 125, no. 13: e43–e54. https://doi.org/10.1111/1471-0528.15240

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi, N., Coluccio, A., Thorball, C.W., et al., ZNF445 is a primary regulator of genomic imprinting, Genes Dev., 2019, vol. 33, nos. 1–2, pp. 49–54. https://doi.org/10.1101/gad.320069.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sazhenova, E.A. and Lebedev, I.N., Molecular mechanisms of imprinted gene disorders in pathology of pre- and postnatal development, Med. Genet., 2018, vol. 17, no. 11, pp. 3–6. https://doi.org/10.25557/2073-7998.2018.11.3-6

    Article  Google Scholar 

  44. Li, Z.K., Wang, L.Y., Wang, L.B., et al., Generation of uniparental mice from hypomethylated haploid ESCs with imprinting region deletions, Cell Stem Cell, 2018, vol. 23, no. 5, pp. 665–676. https://doi.org/10.1016/j.stem.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, Z., Wang, Y., Lin, J., et al., Genetic and epigenetic risks of assisted reproduction, Best Pract. Res. Clin. Obstet. Gynaecol., 2017, vol. 44, pp. 90–104. https://doi.org/10.1016/j.bpobgyn.2017.07.004

    Article  PubMed  Google Scholar 

  46. Hattori, H., Hiura, H., Kitamura, A., et al., Association of four imprinting disorders and ART, Clin. Epigenet., 2019, vol. 11, no. 1, p. 21. https://doi.org/10.1186/s13148-019-0623-3

    Article  Google Scholar 

  47. Xu, J., Zhang, M., Niu, W., et al., Genome-wide uniparental disomy screen in human discarded morphologically abnormal embryos, Sci. Rep., 2015, vol. 5, p. 12302. https://doi.org/10.1038/srep12302

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sazhenova, E.A. and Lebedev, I.N., Genomic imprinting and assisted reproductive technologies, in Molekulyarno-biologicheskie tekhnologii v meditsinskoi praktike (Molecular Biological Technologies in Medical Practice), Novosibirsk: Novosibirsk: Akademizdat, 2018, issue 27, pp. 105—116.

  49. Baranov, V.S. and Kuznetsova, T.V., Human developmental genetics, in Nasledstvennye bolezni: natsional’noe rukovodstvo (Inherited Diseases: National Guidelines), Bochkov, N.P., Ginter, E.K., and Puzyrev, V.P., Eds., Moscow: GEOTAR-Media, 2012, pp. 81–125.

    Google Scholar 

  50. Baranov, V.S., Kuznetsova, T.V., Pendina, A.A., et al., Epigenetic mechanisms of normal and pathological human development, in Epigenetika (Epigenetics), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2012, pp. 225–266.

    Google Scholar 

  51. On Human Gene Editing: International Summit Statement. https://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=12032015a.

  52. Munch, E.M., Sparks, A.E., and Gonzalez Bosquet, J., Differentially expressed genes in preimplantation human embryos: potential candidate genes for blastocyst formation and implantation, J. Assist. Reprod. Genet., 2016, vol. 33, no. 8, pp. 1017–1025. https://doi.org/10.1007/s10815-016-0745-x

    Article  PubMed  PubMed Central  Google Scholar 

  53. Godini, R. and Fallahi, H., Dynamics changes in the transcription factors during early human embryonic development, J. Cell Physiol., 2019, vol. 234, no. 5, pp. 6489–6502. https://doi.org/10.1002/jcp.27386

    Article  CAS  PubMed  Google Scholar 

  54. Fogarty, N.M.E., McCarthy, A., Snijders, K.E., et al., Genome editing reveals a role for OCT4 in human embryogenesis, Nature, 2017, vol. 550, no. 7674, pp. 67–73. https://doi.org/10.1038/nature24033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Okada, Y. and Yamaguchi, K., Epigenetic modifications and reprogramming in paternal pronucleus: sperm, preimplantation embryo, and beyond, Cell Mol. Life Sci., 2017, vol. 74, no. 11, pp. 1957–1967. https://doi.org/10.1007/s00018-016-2447-z

    Article  CAS  PubMed  Google Scholar 

  56. Ke, Y., Xu, Y., Chen, X., et al., 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis, Cell. 2017, vol. 170, no. 2, pp. 367–381. https://doi.org/10.1016/j.cell.2017.06.029

    Article  CAS  PubMed  Google Scholar 

  57. Eckersley-Maslin, M.A., Alda-Catalinas, C., and Reik, W., Dynamics of the epigenetic landscape during the maternal-to-zygotic transition, Nat. Rev. Mol. Cell Biol., 2018, vol. 19, no. 7, pp. 436–450. https://doi.org/10.1038/s41580-018-0008-z

    Article  CAS  PubMed  Google Scholar 

  58. Racko, D., Benedetti, F., Dorier, J., and Stasiak, A., Are TADs supercoiled?, Nucleic Acids Res., 2019, vol. 47, no. 2, pp. 521–532. https://doi.org/10.1093/nar/gky1091

    Article  CAS  PubMed  Google Scholar 

  59. Hug, C.B. and Vaquerizas, J.M., The birth of the 3D genome during early embryonic development, Trends Genet., 2018, vol. 34, no. 12, pp. 903–914. https://doi.org/10.1016/j.tig.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  60. Lebedev, I.N., Human cytogenetics in genome and postgenome era: from genome architecture to novel chromosomal diseases, Tsitologiya, 2018, vol. 60, no. 7, pp. 499–502. https://doi.org/10.31116/tsitol.2018.07.02

    Article  Google Scholar 

  61. Yamamoto, R. and Aoki, F., A unique mechanism regulating gene expression in 1 cell embryos, J. Reprod. Dev., 2017, vol. 63, no. 1, pp. 9–11. https://doi.org/10.1262/jrd.2016-133

    Article  CAS  PubMed  Google Scholar 

  62. Du, H., Zheng, B., Huang, R., et al., Allelic reprogramming of 3D chromatin architecture during early mammalian development, Nature, 2017, vol. 547, no. 7662, pp. 232–235. https://doi.org/10.1038/nature23263

    Article  CAS  PubMed  Google Scholar 

  63. Deglincerti, A., Croft, G.F., Pietila, L.N., et al., Self-organization of the in vitro attached human embryo, Nature, 2016, vol. 533, no. 7602, pp. 251–254. https://doi.org/10.1038/nature17948

    Article  CAS  PubMed  Google Scholar 

  64. Liu, G., Wang, W., Hu, S., et al., Inherited DNA methylation primes the establishment of accessible chromatin during genome activation, Genome Res., 2018, vol. 28, no. 7, pp. 998–1007. https://doi.org/10.1101/gr.228833.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu, J., Xu, J., Liu, B., et al., Chromatin analysis in human early development reveals epigenetic transition during ZGA, Nature, 2018, vol. 557, no. 7704, pp. 256–260. https://doi.org/10.1038/s41586-018-0080-8

    Article  CAS  PubMed  Google Scholar 

  66. Fraser, R. and Lin, C.J., Epigenetic reprogramming of the zygote in mice and men: on your marks, get set, go! Reproduction, 2016, vol. 152, no. 6, pp. R211–R222. https://doi.org/10.1530/REP-16-0376

    Article  PubMed  PubMed Central  Google Scholar 

  67. Petrussa, L., Van de Velde, H., and De Rycke, M., Similar kinetics for 5-methylcytosine and 5-hydroxymethylcytosine during human preimplantation development in vitro, Mol. Reprod. Dev., 2016, vol. 83, no. 7, pp. 594–605. https://doi.org/10.1002/mrd.22656

    Article  CAS  PubMed  Google Scholar 

  68. Baranov, V.S., Pendina, A.A., Kuznetsova, T.V., et al., Peculiarities of metaphase chromosome methylation pattern in preimplantation human embryos, Tsitologiya, 2005, vol. 47, no. 8, pp. 723–730.

    CAS  Google Scholar 

  69. Pendina, A.A., Efimova, O.A., Fedorova, I.D., et al., DNA methylation patterns of metaphase chromosomes in human preimplantation embryos, Cytogenet. Genome Res., 2011, vol. 132, nos. 1–2, pp. 1–7. https://doi.org/10.1159/000318673

    Article  CAS  PubMed  Google Scholar 

  70. Efimova, O.A., Pendina, A.A., Tikhonov, A.V., et al., Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos, Reproduction, 2015, vol. 149, no. 3, pp. 223–233. https://doi.org/10.1530/REP-14-0343

    Article  CAS  PubMed  Google Scholar 

  71. White, M.D., Angiolini, J.F., Alvarez, Y.D., et al., Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo, Cell, 2016, vol. 165, no. 1, pp. 75–87. https://doi.org/10.1016/j.cell.2016.02.032

    Article  CAS  PubMed  Google Scholar 

  72. De Iaco, A., Planet, E., Coluccio, A., et al., DUX-family transcription factors regulate zygotic genome activation in placental mammals, Nat. Genet., vol. 49, no. 6, pp. 941–945. https://doi.org/10.1038/ng.3858

  73. Geng, L.N., Yao, Z., Snider, L., et al., DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy, Dev. Cell., 2012, vol. 22, no. 1, pp. 38–51. https://doi.org/10.1016/j.devcel.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  74. Morris, S.A., Human embryos cultured in vitro to 14 days, Open Biol., 2017, vol. 7, no. 1, p. 170003. https://doi.org/10.1098/rsob.170003

    Article  PubMed  PubMed Central  Google Scholar 

  75. Knorre, A.G., Kratkii ocherk po embriologii cheloveka (A Brief Survey of Human Embryology), Leningrad: Meditsina, 1967.

  76. Rossant, J., Human embryology: implantation barrier overcome, Nature, 2016, vol. 533, no. 7602, pp. 182–183. https://doi.org/10.1038/nature17894

    Article  CAS  PubMed  Google Scholar 

  77. Amato, P., Tachibana, M., Sparman, M., and Mitalipov, S., Three-parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases, Fertil. Steril., 2014, vol. 101, no. 1, pp. 31–35. https://doi.org/10.1016/j.fertnstert.2013.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Luo, S., Valencia, C.A., Zhang, J., et al., Biparental inheritance of mitochondrial DNA in humans, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 51, pp. 13039–13044. https://doi.org/10.1073/pnas.1810946115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, Y., Zhang, X., Yi, L., and Hou, Z., Naive induced pluripotent stem cells generated from β-thalassemia fibroblasts allow efficient gene correction with CRISP/Cas 9, Stem Cells Transl. Med., 2016, vol. 5, no. 1, pp. 8–19. https://doi.org/10.5966/sctm.2015-0157

    Article  CAS  PubMed  Google Scholar 

  80. Lanphier, E., Urnov, F., Heacker, S.E., et al., Do not edit human germ line, Nature, 2015, vol. 519, no. 7544, pp. 410–411. https://doi.org/10.1038/519410a

    Article  CAS  PubMed  Google Scholar 

  81. Ma, H., Marti-Gutierrez, N., Park, S.W., et al., Correction of a pathogenic gene mutation in human embryos, Nature, 2017, vol. 548, no. 7668, pp. 413–419. https://doi.org/10.1038/nature23305

    Article  CAS  Google Scholar 

  82. Lander, E., Baylis, Fr., Zhang, F., et al., Adopt a moratorium on heritable genome editing, Nature, 2019, vol. 567, no. 7747, pp. 165–168. https://doi.org/10.1038/d41586-019-00726-5

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within the framework of the Fundamental Research Topic of the Ministry of Science and Higher Education of the Russian Federation for 2019–2021 (reg. number AAAA-A19-119021290033-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Baranov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, V.S., Kogan, I.Y. & Kuznetzova, T.V. Advances in Developmental Genetics and Achievements in Assisted Reproductive Technology. Russ J Genet 55, 1171–1182 (2019). https://doi.org/10.1134/S1022795419100028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419100028

Keywords:

Navigation