Skip to main content
Log in

GISH study of advanced generation of the interspecific hybrids between Allium cepa L. and Allium fistulosum L. with relative resistance to downy mildew

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genomic in situ hybridization (GISH) was used for a chromosomal composition study of the later generations of interspecific hybrids between A. cepa L. and A. fistulosum L., which are relatively resistant to downy mildew (peronosporosis). GISH revealed that F2 hybrids, which did not produce seeds, were triploids (2n = 3x = 24) with 24 chromosomes and possessed in their complements 16 chromosomes of A. fistulosum L. and eight chromosomes of A. cepa L. or eight chromosomes of A. fistulosum L. and 16 chromosomes of A. cepa L. The advanced F5 hybrid, which produced few seeds, was amphidiploid with 32 chromosomes. BC1F5 hybrid was triploid with eight chromosomes of A. fistulosum L. and 16 chromosomes of A. cepa L., which did not produce seeds. BC2 (BC1F5) plant was amphidiploid that possessed 4 recombinant chromosomes and produced few seeds. GISH results point to 2n-gametes formation in macro- and microsporogenesis of the hybrids. The mechanism of 2n-gametes formation and the possibility of apomixes events in the backcrossing progeny are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, F., Novy, R.G., Helgeson, J.P., and Jiang, J., Cytological characterization of potato-Solanum tuberosum somatic hybrids and their backcross progenies by genomic in situ hybridization, Genome, 1999, vol. 42, pp. 987–992.

    Article  Google Scholar 

  2. Khrustaleva, L.I., Molecular cytogenetics in plant breeding, Izv. Timiryazevsk. S-kh. Akad., 2007, no. 1, pp. 45–55.

    Google Scholar 

  3. Gavrilenko, T., Larkka, J., Pehu, E., and Rokka, V.-M., Identification of mitotic chromosomes of tuberous and non-tuberous Solanum species (Solanum tuberosum and Solanum brevidens) by GISH in their interspecific hybrids, Genome, 2002, vol. 45, pp. 442–449.

    Article  CAS  PubMed  Google Scholar 

  4. Haider Ali, S.N., Ramanna, M.S., Jacobsen, E., and Visser, R.G.F., Establishment of a complete series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses, Theor. Appl. Genet., 2001, vol. 103, pp. 687–695.

    Article  Google Scholar 

  5. Ji, Y., Pertuzé, R., and Chetelat, R., Genome differentiation by GISH in interspecific and intergeneric hybrids of tomato and related nightshades, Chromosome Res., 2004, vol. 12, pp. 107–116.

    Article  CAS  PubMed  Google Scholar 

  6. Divashuk, M.G., Kroupin, P.Yu., Sloviev, A.A., and Karlov, G.I., Molecular cytogenetic characterization of the spring triticale line 131/7 carrying a rye-wheat translocation, Russ. J. Genet., 2001, vol. 46, no. 2, pp. 185–190.

    Article  Google Scholar 

  7. Fradkin, M., Greizerstein, E., Paccapelo, H., et al., Cytological analysis of hybrids among triticales and trigopiros, Genet. Mol. Biol., 2009, vol. 32, no. 4, pp. 797–801.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Khrustaleva, L.I. and Kik, C., Cytogenetical studies in the bridge cross Allium cepa × (A. fistulosum × A. roylei), Theor. Appl. Genet., 1998, vol. 96, pp. 8–14.

    Article  Google Scholar 

  9. Chuda, A. and Adamus, A., Hybridization and molecular characterization of F1 Allium cepa × A. roylei plants, Acta Biol. Cracov., Ser. Bot., 2012, vol. 54, no. 2, pp. 25–31.

    Google Scholar 

  10. Khrustaleva, L.I. and Kik, C., Introgression of Allium fistulosum into A. cepa mediated by A. roylei, Theor. Appl. Genet., 2000, vol. 100, pp. 17–26.

    Article  Google Scholar 

  11. Hizume, M., Allodiploid nature of Allium wakegi Araki revealed by genomic in situ hybridization and localization of 5S and 18S rDNA, J. Genet., 1994, vol. 69, pp. 407–415.

    CAS  Google Scholar 

  12. Shibata, F. and Hizume, M., The identification and analysis of the sequences that allow the detection of Allium cepa chromosomes by GISH in the allodiploid A. wakegi, Chromosoma, 2002, vol. 111, no. 3, pp. 184–191.

    Article  CAS  PubMed  Google Scholar 

  13. Hou, A. and Peffley, E.B., Recombinant chromosomes of advanced backcross plants between Allium cepa L. and A. fistulosum L. revealed by in situ hybridization, Theor. Appl. Genet., 2000, vol. 100, pp. 1190–1196.

    Article  CAS  Google Scholar 

  14. Khrustaleva, L.I., Kan, L.Yu., Kirov, I.V., and Sal’nik, A.A., Molecular and cytogenetic analysis of natural and synthetic Allium fistulosum sx A. cepa hybrids, Izv. Timiryazevsk. S-kh. Akad., 2010, no. 4, pp. 12–21.

    Google Scholar 

  15. Shigyo, M., Imamura, K., Iino, M., et al., Identification of alien chromosomes in a series of Allium fistulosum—A. cepa monosomic addition lines by means of genomic in situ hybridization, Genes Genet. Syst., 1998, vol. 73, no. 5, pp. 311–315.

    Article  Google Scholar 

  16. Vu, H.Q., Yoshimatsu, Y., Khrustaleva, L.I., et al., Alien genes introgression and development of alien monosomic addition lines from a threatened species, Allium roylei Stearn, to Allium cepa L., Theor. Appl. Genet., 2012, vol. 124, no. 7, pp. 1241–1257.

    Article  CAS  PubMed  Google Scholar 

  17. Scholten, O.E., van Heusden, A.W., Khrustaleva, L.I., et al., The long and winding road leading to the successful introgression of downy mildew resistance into onion, Euphytica, 2007, vol. 156, pp. 345–353.

    Article  Google Scholar 

  18. Jones, R.N., Cytogenetic evolution in the genus Allium, in Cytogenetics of Crop Plants, Swaminathan, M.S., Gupta, P.K., and Sinha, Eds., New York: MacMillan, 1983, pp. 516–554.

    Google Scholar 

  19. Currah, L. and Maude, R.B., Laboratory tests for leaf resistance to Botrytis squamosa in onions, Ann. Appl. Biol., 1984, vol. 105, pp. 277–283.

    Article  Google Scholar 

  20. Netzer, D., Rabinowitch, H.D., and Weintal, C.H., Greenhouse technique to evaluate onion resistance to pink root, Euphytica, 1985, vol. 32, pp. 385–391.

    Article  Google Scholar 

  21. Galván, G.A., Wietsma, W.A., Putrasemedja, S., et al., Screening for resistance to anthracnose (Colletotrichum glorosporioides Penz.) in Allium cepa and its wild relatives, Euphytica, 1997, vol. 95, pp. 173–178.

    Article  Google Scholar 

  22. Emsweller, S.L. and Jones, H.A., An interspecifc hybrid in Allium, Hilgardia, 1935, no. 9, pp. 265–273.

    Google Scholar 

  23. Levan, A., The cytology of the species hybrid Allium cepa × fistulosum and its polyploidy derivates, Hereditas, 1936, no. 21, pp. 253–272.

    Google Scholar 

  24. Peffley, E.B. and Hou, A., Bulb-type onion itrogressants possessing Allium fistulosum L. genes recovered from interspecific hybrid backcrosses between A. cepa L. and A. fistulosum L., Theor. Appl. Genet., 2000, vol. 100, pp. 528–538.

    Google Scholar 

  25. Ershov, I.I. and Orekhovskaya, M.V., Resistance of some Allium L. species to false onion downy mildew, Tr. Prikl. Bot., Genet. Sel., 1968, vol. 11, no. 1, pp. 131–133.

    Google Scholar 

  26. Yur’eva, N.A. and Titova, I.V., Interspecific hybridization of onion, in Trudy po selektsii ovoshchnykh kul’tur (Transections on Vegetable Crop Breeding), Moscow, 1980, no. 12, pp. 98–104.

    Google Scholar 

  27. Metodicheskie ukazaniya po selektsii lukovykh kul’tur (Methodical Guidelines on Onion Crop Breeding), Moscow, 1997.

  28. Rogers, S.O. and Bendich, A.J., Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues, Plant Mol. Biol., 1985, vol. 5, pp. 69–76.

    Article  CAS  PubMed  Google Scholar 

  29. Pijnacker, L.P. and Ferwerda, M.A., Giemsa C-banding of potato chromosomes, Can. J. Genet. Cytol., 1984, no. 26, pp. 415–419.

    Google Scholar 

  30. Meinkoth, J. and Wahl, G., Hybridization of nucleic acids immobilized on solid supports, Anal. Biochem., 1984, vol. 138, pp. 267–284.

    Article  CAS  PubMed  Google Scholar 

  31. Kalkman, E.R., Analysis of the C-banded karyotype of Allium cepa L. standard system of nomenclature and polymorphism, Genetics, 1984, vol. 65, pp. 141–148.

    Google Scholar 

  32. de Vries, J.N., Onion chromosome nomenclature and homoeology relationships-workshop report, Euphytica, 1990, vol. 49, pp. 1–3.

    Article  Google Scholar 

  33. Reeves, A. and Tear, J., Micromeasure for Windows, Version 3.2, Free program distributed by the authors, 1999. http://www.colostate.edu/depts/biology/micromeasure

    Google Scholar 

  34. Jones, R.N. and Rees, H., Nuclear DNA variation in Allium, Heredity, 1968, no. 23, pp. 591–605.

    Google Scholar 

  35. de Vries, J.N. and Jongerius, M.C., Interstitial C-bands on the chromosomes of Allium species from the section cepa, in Proceedings Eucarpia 4th Allium Symposium, Riggs, T.J., et al., Eds., Wellesbourne: Institute of Horticultural Research, 1988, pp. 71–78.

    Google Scholar 

  36. Ulloa, G.M., Corgan, J.N., and Dunford, M., Chromosome characteristics and behaviour differences in Allium fistulosum L., A. cepa L., their F1 hybrid and selected backcross progeny, Theor. Appl. Genet., 1994, vol. 89, pp. 567–571.

    Article  Google Scholar 

  37. Maeda, T., Chiasma studies in Allium fistulosum L., Allium cepa L. and their F1, F2 and backcross hybrids, Japn. J. Genet., 1937, vol. 13, pp. 146–169.

    Article  Google Scholar 

  38. Poulsen, N., Chives (Allium schoenoprasum), in Onions and Allied Crops, Brewster, J. and Rabinowitch, H., Eds., Boca Raton: CRC Press, 1990, vol. 3, pp. 231–250.

    Google Scholar 

  39. Kojima, A. and Nagato, Y., Pseudogamous embryogenesis and the degree of parthenogenesis in Allium tuberosum, Sex. Plant Reprod., 1992, vol. 5, pp. 79–85.

    Article  Google Scholar 

  40. Stevenson, M., Armstrong, S.J., Ford-Lloyd, B.V., and Jones, G.H., Comparative analysis of crossover exchanges and chiasmata in Allium cepa × fistulosum after genomic in situ hybridization (GISH), Chrom. Res., 1998, vol. 6, pp. 567–574.

    Article  CAS  PubMed  Google Scholar 

  41. Kravets, E.A., Cytomixis, its nature, value and the cytological consequences, Cytol. Genet., 2012, no. 3, pp. 75–85.

    Google Scholar 

  42. Cheng Kuo-Chang, Nien Hsiu-Wan, Yang Chin-Lan, et al., Light and electron microscopical observations of its relation to variation and evolution, Acta Bot. Sin., 1975, no. 3, pp. 60–69.

    Google Scholar 

  43. Yang Jun, Y.U., Chun-Hong, Wang Xin-Yu, and Zheng Cuo-Chang Cheng, K.G., Ultrastructural observation on the intra- and intercellular microtrabecullar network of the pollen mothe cells in onion (Allium cepa), Acta Bot. Sin., 2001, vol. 43, no. 4, pp. 331–338.

    Google Scholar 

  44. Badaev, N.S., Badaeva, E.D., Dubovets, N.I., et al., Formation of a synthetic karyotype of tetraploid triticale, Genome, 1992, vol. 35, no. 2, pp. 311–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Khrustaleva.

Additional information

Original Russian Text © M.V. Budylin, L.Yu. Kan, V.S. Romanov, L.I. Khrustaleva, 2014, published in Genetika, 2014, Vol. 50, No. 4, pp. 443–451.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budylin, M.V., Kan, L.Y., Romanov, V.S. et al. GISH study of advanced generation of the interspecific hybrids between Allium cepa L. and Allium fistulosum L. with relative resistance to downy mildew. Russ J Genet 50, 387–394 (2014). https://doi.org/10.1134/S1022795414040036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414040036

Keywords

Navigation