Skip to main content
Log in

Quantum-Chemical Modeling of Radical Reactions of Isoprene Rubber with Sulfur and N-Cyclohexyl-2-benzthiazolylsulphenamide

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The DFT B3LYP/6-311G** quantum-chemical density functional theory is used to calculate the change in the total electron energy upon initiation and crosslinking reactions during the sulfur vulcanization of isoprene rubber with an N-cyclohexyl-2-benzthiazolylsulfenamide accelerator in atmospheric oxygen. An analysis is performed of the effect the number of sulfur atoms has on the activity of the radicals of the sulfiding complex that emerge when the sulfur accepts the radicals that form during the decomposition of the accelerator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Y. Coran, in The Science and Technology of Rubber, Ed. by J. E. Mark, B. Erman, and C. M. Roland, 4th ed. (Academic, Elsevier, New York, 2013), p. 337.

    Google Scholar 

  2. W. Scheele, O. Lorenz, and W. Dummer, Rubber Chem. Technol. 29, 1 (1956). https://doi.org/10.5254/1.3542510

    Article  CAS  Google Scholar 

  3. B. Saville and A. A. Watson, Rubber Chem. Technol. 40, 100 (1967). https://doi.org/10.5254/1.3539039

    Article  CAS  Google Scholar 

  4. P. J. Nieuwenhuizen, J. Reedijk, M. van Duin, and W. J. McGill, Rubber Chem. Technol. 70, 368 (1997). https://doi.org/10.5254/1.3538436

    Article  CAS  Google Scholar 

  5. P. Ghosh, S. Katare, P. Patkar, et al., Rubber Chem. Technol. 76, 592 (2003). https://doi.org/10.5254/1.3547762

    Article  CAS  Google Scholar 

  6. P. Wang, H. Qian, and H. Yu, J. Appl. Polym. Sci. 88, 680 (2003). https://doi.org/10.1002/app.11632

    Article  CAS  Google Scholar 

  7. T. H. Khang and Z. M. Ariff, J. Therm. Anal. Calorim. 109, 1545 (2012). https://doi.org/10.1007/s10973-011-1937-3

    Article  CAS  Google Scholar 

  8. M. I. Fathurrohman, D. R. Maspanger, and S. Sutrisno, Bull. Chem. React. Eng. Catal. 10, 104 (2015). http://bcrec.undip.ac.id

    Article  CAS  Google Scholar 

  9. S. M. Hosseini, M. Razzaghi-Kashani, Soft Matter. 14, 91948 (2018). https://doi.org/10.1039/c8sm01953c

    Article  CAS  Google Scholar 

  10. R. Ding and A. I. Leonov, J. Appl. Polym. Sci. 61, 455 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<455::AID-APP8>3.0.CO;2-H

    Article  CAS  Google Scholar 

  11. B. Likozar and M. Krajnc, J. Appl. Polym. Sci. 103, 293 (2007). https://doi.org/10.1002/app.25284

    Article  CAS  Google Scholar 

  12. V. G. Markelov and M. E. Solov’ev, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 50 (4), 95 (2007).

    CAS  Google Scholar 

  13. F. Zhao, C. Wu, and X. Shi, J. Macromol. Sci., Part B 50, 398 (2011). https://doi.org/10.1080/00222341003772282

    Article  CAS  Google Scholar 

  14. E. Leroy, A. Souid, and R. Deterre, Polym. Test. 32, 575 (2013). https://doi.org/10.1016/j.polymertesting.2013.01.003

    Article  CAS  Google Scholar 

  15. G. Milani and F. Milani, J. Math. Chem. 55, 552 (2017). https://doi.org/10.1007/s10910-016-0695-7

    Article  CAS  Google Scholar 

  16. V. G. Markelov, A. B. Raukhvarger, and M. E. Solov’ev, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 52 (5), 119 (2009).

    CAS  Google Scholar 

  17. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  18. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  19. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.462066

    Article  CAS  Google Scholar 

  20. B. Miehlich, A. Savin, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).https://doi.org/10.1016/0009-2614(89)87234-3

    Article  CAS  Google Scholar 

  21. M. Valiev et al., Comput. Phys. Commun. 181, 1477 (2010). https://doi.org/10.1016/j.cpc.2010.04.018

    Article  CAS  Google Scholar 

  22. F. Neese, Wiley Interdiscipl. Rev.: Comput. Mol. Sci. 8, e1327 (2017). https://doi.org/10.1002/wcms.1327

  23. E. M. Pliss, M. E. Soloviev, I. V. Tikhonov, et al., Russ. J. Phys. Chem. B 10, 417 (2016).https://doi.org/10.1134/S1990793116030052

  24. M. E. Solov’ev, E. A. Kurganova, A. S. Frolov, and G. N. Koshel’, Russ. J. Phys. Chem. A 93, 470 (2019). https://doi.org/10.1134/S0036024419030191

    Article  Google Scholar 

  25. M. Soloviev, I. Moskalenko, and E. Pliss, React. Kinet. Mechanisms Catal. 127, 561 (2019).https://doi.org/10.1007/s11144-019-01613-w

  26. L. Goerigk and N. Mehta, Austral. J. Chem. 72, 563 (2019). https://doi.org/10.1071/CH19023

    Article  CAS  Google Scholar 

  27. C. G. Broyden, J. Inst. Math. Appl. 6, 76 (1970). https://doi.org/10.1093/imamat/6.1.76

    Article  Google Scholar 

  28. R. Fletcher, Comput. J. 13, 317 (1970). https://doi.org/10.1093/comjnl/13.3.317

    Article  Google Scholar 

  29. D. Goldfarb, Math. Comput. 24, 23 (1970). https://doi.org/10.1090/S0025-5718-1970-0258249-6

    Article  Google Scholar 

  30. D. F. Shanno, Math. Comput. 24, 647 (1970). https://doi.org/10.1090/S0025-5718-1970-0274029-X

    Article  Google Scholar 

  31. M. Mueller, Fundamentals of Quantum Chemistry. Molecular Spectroscopy and Modern Electronic Structure Computation (Kluwer Academic, New York, 2002). https://doi.org/10.1063/1.1535013

    Book  Google Scholar 

  32. I. A. Levine, Quantum Chemistry, 5th ed. (Prentice-Hall, Upper Sadle River, 2000).

  33. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007). https://doi.org/10.1063/1.2408420

  34. I. Degirmenci and M. L. Coote, J. Phys. Chem. A 120, 7398 (2016). https://doi.org/10.1021/acs.jpca.6b08223

    Article  CAS  PubMed  Google Scholar 

  35. F. Fairbrother, G. Gee, and G. T. Merrall, J. Polym. Sci. 26, 459 (1955). https://doi.org/10.1002/pol.1955.120168231

    Article  Google Scholar 

  36. I. V. Khudyakov, N. Arsu, S. Jockusch, and J. Turro, Designed Monom. Polym. 6, 91 (2003). https://doi.org/10.1163/156855503321127565

    Article  CAS  Google Scholar 

  37. I. Rintoul, Open Access Chem. Biol. Proc. Eng. J. 5, 1 (2017).https://doi.org/10.3390/pr5020015

    Article  CAS  Google Scholar 

  38. E. M. Pliss, A. M. Grobov, A. K. Kuzaev, and A. L. Buchachenko, Mendeleev Commun. 30, 433 (2020). https://doi.org/10.1016/j.mencom.2020.07.009

    Article  CAS  Google Scholar 

  39. E. T. Denisov and I. V. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology (CRC, Boca Raton, 2005).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Solov’ev.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, M.E., Vlasov, V.V. Quantum-Chemical Modeling of Radical Reactions of Isoprene Rubber with Sulfur and N-Cyclohexyl-2-benzthiazolylsulphenamide. Russ. J. Phys. Chem. 96, 2143–2149 (2022). https://doi.org/10.1134/S0036024422100302

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422100302

Keywords:

Navigation