Skip to main content
Log in

Extracellular Matrix in the Regulation of Stem Cell Differentiation

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Extracellular matrix (ECM) proteins fill the space between cells in multicellular organisms, contributing to the structure of organs and tissues. The mechanical properties of ECM are well studied. At present, the role of individual ECM components and the three-dimensional tissue-specific matrices in the regulation of cell functional activity, proliferation, migration, acquisition of a specialized phenotype and its maintenance is intensively studied. In this review, we described main ECM structural proteins, enzymes, and extracellular vesicles and present the data on the participation of ECM components in the regulation of stem cell differentiation and self-maintenance, as well as approaches to the modeling of stem cells microenvironment using decellularized ECM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(d)ECM:

(decellularized) extracellular matrix

MMP:

matrix metalloproteinase

MSC:

mesenchymal stromal cell

NGN3:

neurogenin 3

PDX1:

pancreatic and duodenal homeobox 1

TAZ:

transcriptional coactivator with PDZ-binding motif

TGF-β:

transforming growth factor beta

YAP:

Yes-associated protein

References

  1. Rozario, T., and DeSimone, D. W. (2010) The extracellular matrix in development and morphogenesis: a dynamic view, Dev. Biol., 341, 126–140.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, F. M., and Liu, X. (2016) Advancing biomaterials of human origin for tissue engineering, Prog. Polym. Sci., 53, 86–168.

    Article  CAS  PubMed  Google Scholar 

  3. Yi, S., Ding, F., Gong, L., and Gu, X. (2017) Extracellular matrix scaffolds for tissue engineering and regenerative medicine, Curr. Stem Cell Res. Ther., 12, 233–246.

    Article  CAS  PubMed  Google Scholar 

  4. Egeblad, M., Rasch, M. G., and Weaver, V. M. (2010) Dynamic interplay between the collagen scaffold and tumor evolution, Curr. Opin. Cell Biol., 22, 697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yurchenco, P. D. (2011) Basement membranes: cell scaf–foldings and signaling platforms, Cold Spring Harb. Perspect Biol., 3, a004911.

    Google Scholar 

  6. Naba, A., Clauser, K. R., Ding, H., Whittaker, C. A., Carr, S. A., and Hynes, R. O. (2016) The extracellular matrix: tools and insights for the “omics” era, Matrix Biol., 49, 10–24.

    Article  CAS  PubMed  Google Scholar 

  7. Gattazzo, F., Urciuolo, A., and Bonaldo, P. (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche, Biochim. Biophys. Acta, 1840, 2506–2519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ragelle, H., Naba, A., Larson, B. L., Zhou, F., Prijic, M., Whittaker, C. A., Rosarioa, A. D., Langer, R., Hynes, R. O., and Anderson, D. G. (2017) Comprehensive proteom–ic characterization of stem cell–derived extracellular matri–ces, Biomaterials, 128, 147–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson, H. C. (1967) Electron microscopic studies of induced cartilage development and calcification, J. Cell Biol., 35, 81–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bonucci, E. (1967) Fine structure of early cartilage calcifi–cation, J. Ultrastruct. Res., 20, 33–50.

    Article  CAS  Google Scholar 

  11. Yanez–Mo, M., Siljander, P. R. M., Andreu, Z., Bedina Zavec, A., Borras, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colas, E., Cordeiro–da Silva, A., Fais, S., Falcon–Perez, J. M., Ghobrial, I. M., Giebel, B., Gimona, M., Graner, M., Gursel, I., Gursel, M., Heegaard, N. H. H., Hendrix, A., Kierulf, P., Kokubun, K., Kosanovic, M., Kralj–Iglic, V., Kramer–Albers, E.–M., Laitinen, S., Lasser, C., Lener, T., Ligeti, E., Line, A., Lipps, G., Llorente, A., Lotvall, J., Mancek–Keber, M., Marcilla, A., Mittelbrunn, M., Nazarenko, I., Nolte–‘t Hoen, E. N. M., Nyman, T. A., O’Driscoll, L., Olivan, M., Oliveira, C., Pallinger, E., del Portillo, H. A., Reventos, J., Rigau, M., Rohde, E., Sammar, M., Sanchez–Madrid, F., Santarem, N., Schallmoser, K., Ostenfeld, M. S., Stoorvogel, W., Stukelj, R., Van der Grein, S. G., Vasconcelos, M. H., Wauben, M. H. M., and Colas, E. (2015) Biological properties of extracellular vesicles and their physiological functions, J. Extracell. Vesicles, 4, 27066.

    Article  PubMed  Google Scholar 

  12. Kapustin, A., Davies, J. D., Reynolds, J. L., McNair, R., Jones, G. T., Sidibe, A., Schurgers, L. J., Skepper, J. N., Proudfoot, D., Mayr, M., and Shanahan, C. M. (2011) Calcium regulates key components of vascular smooth muscle cell–derived matrix vesicles to enhance mineraliza–tion, Circ. Res., 109, e1–e12.

    Google Scholar 

  13. Wang, X., Omar, O., Vazirisani, F., Thomsen, P., and Ekstrom, K. (2018) Mesenchymal stem cell–derived exo–somes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differ–entiation, PLoS One, 13, e0193059.

    Google Scholar 

  14. Nawaz, M., Shah, N., Zanetti, B., Maugeri, M., Silvestre, R., Fatima, F., Neder, L., and Valadi, H. (2018) Extracellular vesicles and matrix remodeling enzymes: the emerging roles in extracellular matrix remodeling, progres–sion of diseases and tissue repair, Cells, 7, E167.

    Google Scholar 

  15. Schofield, R. (1978) The relationship between the spleen colony–forming cell and the haemopoietic stem cell, Blood Cells, 4, 7–25.

    CAS  PubMed  Google Scholar 

  16. Mashinchian, O., Pisconti, A., Le Moal, E., and Bentzinger, C. F. (2018) The muscle stem cell niche in health and disease, Curr. Top. Dev. Biol., 126, 23–65.

    Article  PubMed  Google Scholar 

  17. Spit, M., Koo, B. K., and Maurice, M. M. (2018) Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer, Open Biol., 8, 180120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo, P., Sun, H., Zhang, Y., Tighe, S., Chen, S., Su, C. W., Liu, Y., Zhao, H., Hu, M., and Zhu, Y. (2018) Limbal niche cells are a potent resource of adult mesenchymal pro–genitors, J. Cell Mol. Med., 22, 3315–3322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matarredona, E. R., Talaveron, R., and Pastor, A. M. (2018) Interactions between neural progenitor cells and microglia in the subventricular zone: physiological implica–tions in the neurogenic niche and after implantation in the injured brain, Front. Cell Neurosci., 12, 268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nimiritsky, P. P., Sagaradze, G. D., Efimenko, A. Yu., Makarevich, P. I., and Tkachuk, V. A. (2018) The stem cell niche, Tsitologiya, 60, 575–586.

    Article  Google Scholar 

  21. Donnelly, H., Salmeron–Sanchez, M., and Dalby, M. J. (2018) Designing stem cell niches for differentiation and self–renewal, J. R. Soc. Interface, 15, 20180388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Omelyanenko, N. P., and Karpov, I. N. (2017) Patterns of cell–matrix interactions during formation the distraction bone regenerates, Bull. Exp. Biol. Med., 163, 510–514.

    Article  CAS  PubMed  Google Scholar 

  23. Muncie, J. M., and Weaver, V. M. (2018) The physical and biochemical properties of the extracellular matrix regulate cell fate, Curr. Top. Dev. Biol., 130, 1–37.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chermnykh, E., Kalabusheva, E., and Vorotelyak, E. (2018) Extracellular matrix as a regulator of epidermal stem cell fate, Int. J. Mol. Sci., 19, E1003.

    Book  Google Scholar 

  25. Agmon, G., and Christman, K. L. (2016) Controlling stem cell behavior with decellularized extracellular matrix scaf–folds, Curr. Opin. Solid State Mater. Sci., 20, 193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mendez–Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., MacArthur, B. D., Lira, S. A., Scadden, D. T., Ma’ayan, A., Enikolopov, G. N., and Frenette, P. S. (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche, Nature, 466, 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kfoury, Y., and Scadden, D. T. (2015) Mesenchymal cell con–tributions to the stem cell niche, Cell Stem Cell, 16, 239–253.

    Article  CAS  PubMed  Google Scholar 

  28. Humphries, J. D., Byron, A., and Humphries, M. J. (2006) Integrin ligands at a glance, J. Cell Sci., 119, 3901–3903.

    Article  CAS  PubMed  Google Scholar 

  29. Geiger, T., and Zaidel–Bar, R. (2012) Opening the flood–gates: proteomics and the integrin adhesome, Curr. Opin. Cell Biol., 24, 562–568.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, Z., Qu, J., He, L., Peng, H., Chen, P., and Zhou, Y. (2018) α6–Integrin alternative splicing: distinct cytoplas–mic variants in stem cell fate specification and niche inter–action, Stem Cell Res. Ther., 9, 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fujiwara, H., Ferreira, M., Donati, G., Marciano, D. K., Linton, J. M., Sato, Y., Hartner, A., Sekiguchi, K., Reichardt, L. F., and Watt, F. M. (2011) The basement membrane of hair follicle stem cells is a muscle cell niche, Cell, 144, 577–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamada, T., Hasegawa, S., Miyachi, K., Date, Y., Inoue, Y., Yagami, A., Arima, M., Iwata, Y., Yamamoto, N., Nakata, S., Matsunaga, K., Sugiura, K., and Akamatsu, H. (2018) Laminin–332 regulates differentia–tion of human interfollicular epidermal stem cells, Mech Ageing Dev., 171, 37–46.

    Article  CAS  PubMed  Google Scholar 

  33. Elbediwy, A., Vincent–Mistiaen, Z. I., and Thompson, B. J. (2016) YAP and TAZ in epithelial stem cells: a sensor for cell polarity, mechanical forces and tissue damage, Bioessays, 38, 644–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuang, S., Kuroda, K., ·Le Grand, F., and Rudnicki, M. A. (2007) Asymmetric self–renewal and commitment of satel–lite stem cells in muscle, Cell, 129, 999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Desgrosellier, S., Lesperance, J., Seguin, L., Gozo, M., Kato, S., Franovic, A., Yebra, M., Shattil, S. J., and Cheresh, D. A. (2014) Integrin αvβ3 drives Slug activation and stemness in the pregnant and neoplastic mammary gland, Dev. Cell, 30, 295–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barros, C. S., Franco, S. J., and Muller, U. (2011) Extracellular matrix: functions in the nervous system, Cold Spring Harb. Perspect. Biol., 3, a005108.

    Google Scholar 

  37. Gu, Y., Zhu, J., Xue, C., Li, Z., Ding, F., Yang, Y., and Gu, X. (2014) Chitosan/silk fibroin–based, Schwann cell–derived extracellular matrix–modified scaffolds for bridging rat sciatic nerve gaps, Biomaterials, 35, 2253–2263.

    CAS  PubMed  Google Scholar 

  38. Saghatelyan, A., De Chevigny, A., Schachner, M., and Lledo, P. M. (2004) Tenascin–R mediates activity–depend–ent recruitment of neuroblasts in the adult mouse forebrain, Nat. Neurosci., 7, 347–356.

    Article  CAS  PubMed  Google Scholar 

  39. Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E. G., Sacco, A., Leonardi, N. A., Kraft, P., Nguyen, N. K., Thrun, S., Lutolf, M. P., and Blau, H. M. (2010) Substrate elasticity regulates skeletal muscle stem cell self–renewal in culture, Science, 329, 1078–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Swift, J., Ivanovska, I. L., Buxboim, A., Harada, T., Dingal, P. D. P., Pinter, J., Pajerowski, J. D., Spinler, K. R., Shin, J.–W., Tewari, M., Rehfeldt, F., Speicher, D. W., and Rehfeldt, F. (2013) Nuclear lamin–A scales with tissue stiff–ness and enhances matrix–directed differentiation, Science, 341, 1240104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meran, L., Baulies, A., and Li, V. S. (2017) Intestinal stem cell niche: the extracellular matrix and cellular compo–nents, Stem Cells Int., 2017, 7970385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mamidi, A., Prawiro, C., Seymour, P. A., de Lichtenberg, K. H., Jackson, A., Serup, P., and Semb, H. (2018) Mechanosignalling via integrins directs fate decisions of pancreatic progenitors, Nature, 564, 114–118.

    Article  CAS  PubMed  Google Scholar 

  43. Brizzi, M. F., Tarone, G., and Defilippi, P. (2012) Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche, Curr. Opin. Cell Biol., 24, 645–651.

    Article  CAS  PubMed  Google Scholar 

  44. Ahmed, M., and French–Constant, C. (2016) Extracellular matrix regulation of stem cell behavior, Curr. Stem Cell Rep., 2, 197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sugawara, K., Tsuruta, D., Ishii, M., Jones, J. C., and Kobayashi, H. (2008) Laminin–332 and–511 in skin, Exp. Dermatol., 17, 473–480.

    Article  CAS  PubMed  Google Scholar 

  46. Nowell, C. S., and Radtke, F. (2017) Corneal epithelial stem cells and their niche at a glance, J. Cell Sci., 130, 1021–1025.

    CAS  PubMed  Google Scholar 

  47. Shapiro, I. M., Landis, W. J., and Risbud, M. V. (2015) Matrix vesicles: are they anchored exosomes? Bone, 79, 29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Narayanan, K., Kumar, S., Padmanabhan, P., Gulyas, B., Wan, A. C., and Rajendran, V. M. (2018) Lineage–specific exosomes could override extracellular matrix mediated human mesenchy–mal stem cell differentiation, Biomaterials, 182, 312–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas, D., O’Brien, T., and Pandit, A. (2018) Toward customized extracellular niche engineering: progress in cell–entrapment technologies, Adv. Mater., 30, doi: 10.1002/adma.201703948.

    Google Scholar 

  50. Klebe, R. J. (1974) Isolation of a collagen–dependent cell attachment factor, Nature, 250, 248–251.

    Article  CAS  PubMed  Google Scholar 

  51. Timpl, R., Rohde, H., Robey, P. G., Rennard, S. I., Foidart, J. M., and Martin, G. R. (1979) Laminin–a gly–coprotein from basement membranes, J. Biol. Chem., 254, 9933–9937.

    CAS  PubMed  Google Scholar 

  52. Takebayashi, T., Horii, T., Denno, H., Nakamachi, N., Otomo, K., Kitamura, S., Miyamoto, K., Horiuchi, T., and Ohta, Y. (2013) Human mesenchymal stem cells differenti–ate to epithelial cells when cultured on thick collagen gel, Biomed. Mater. Eng., 23, 143–153.

    CAS  PubMed  Google Scholar 

  53. Sachenberg, E. I., Nikolaenko, N. N., and Pinaev, G. P. (2015) Spreading and actin cytoskeleton organization of cartilage and bone marrow stromal cells cocultured on var–ious extracellular matrix proteins, Cell Tissue Biol., 9, 1–8.

    Article  Google Scholar 

  54. Chen, X. D., Dusevich, V., Feng, J. Q., Manolagas, S. C., and Jilka, R. L. (2007) Extracellular matrix made by bone marrow cells facilitates expansion of marrow–derived mes–enchymal progenitor cells and prevents their differentiation into osteoblasts, J. Bone Miner. Res., 22, 1943–1956.

    Article  CAS  PubMed  Google Scholar 

  55. Lai, Y., Sun, Y., Skinner, C. M., Son, E. L., Lu, Z., Tuan, R. S., Jilka, R. L., Ling, J., and Chen, X. D. (2010) Reconstitution of marrow–derived extracellular matrix ex vivo: a robust culture system for expanding large–scale high–ly functional human mesenchymal stem cells, Stem Cells Dev., 19, 1095–1107.

    Article  CAS  PubMed  Google Scholar 

  56. Connelly, J. T., Gautrot, J. E., Trappmann, B., Tan, D. W. M., Donati, G., Huck, W. T., and Watt, F. M. (2010) Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions, Nat. Cell Biol., 12, 711–718.

    Article  CAS  PubMed  Google Scholar 

  57. Chen, F. M., and Liu, X. (2016) Advancing biomaterials of human origin for tissue engineering, Prog. Polym. Sci., 53, 86–168.

    Article  CAS  PubMed  Google Scholar 

  58. Wolchok, J. C., and Tresco, P. A. (2010) The isolation of cell derived extracellular matrix constructs using sacrificial open–cell foams, Biomaterials, 31, 9595–9603.

    Article  CAS  PubMed  Google Scholar 

  59. Costa–Almeida, R., Granja, P. L., Soares, R., and Guerreiro, S. G. (2014) Cellular strategies to promote vas–cularization in tissue engineering applications, Eur. Cell Mater., 28, 51–57.

    Article  PubMed  Google Scholar 

  60. Lu, W. D., Zhang, L., Wu, C. L., Liu, Z. G., Lei, G. Y., Liu, J., Gao, W., and Hu, Y. R. (2014) Development of an acellular tumor extracellular matrix as a three–dimensional scaffold for tumor engineering, PLoS One, 9, e103672.

    Google Scholar 

  61. Xing, Q., Yates, K., Tahtinen, M., Shearier, E., Qian, Z., and Zhao, F. (2014) Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation, Tissue Eng. Part C Methods, 21, 77–87.

    Article  CAS  PubMed Central  Google Scholar 

  62. Cheng, C. W., Solorio, L. D., and Alsberg, E. (2014) Decellularized tissue and cell–derived extracellular matri–ces as scaffolds for orthopaedic tissue engineering, Biotechnol. Adv., 32, 462–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kalinina, N., Kharlampieva, D., Loguinova, M., Butenko, I., Pobeguts, O., Efimenko, A., Ageeva, L., Sharonov, G., Ischenko, D., Alekseev, D., Grigorieva, O., Sysoeva, V., Rubina, K., Lazarev, V., and Govorun, V. (2015) Characterization of secretomes provides evidence for adi–pose–derived mesenchymal stromal cells subtypes, Stem Cell Res. Ther., 6, 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Konala, V. B. R., Mamidi, M. K., Bhonde, R., Das, A. K., Pochampally, R., and Pal, R. (2016) The current landscape of the mesenchymal stromal cell secretome: a new para–digm for cell–free regeneration, Cytotherapy, 18, 13–24.

    Article  CAS  PubMed  Google Scholar 

  65. Kuznetsova, E. S., Nimiritsky, P. P., Grigorieva, O. A., Sagaradze, G. D., Rodionov, S. A., Omelyanenko, N. P., Makarevich, P. I., and Efimenko, A. Yu. (2018) Decellularized extracellular matrix of human mesenchymal stromal cells as a novel biomaterial for regenerative medicine, Hum. Gene Ther., A75–A76, doi: 10.1089/hum. 2018.29077.abstracts.

    Google Scholar 

  66. Shakouri–Motlagh, A., O’Connor, A. J., Brennecke, S. P., Kalionis, B., and Heath, D. E. (2017) Native and solubi–lized decellularized extracellular matrix: a critical assess–ment of their potential for improving the expansion of mes–enchymal stem cells, Acta Biomater., 55, 1–12.

    Article  CAS  PubMed  Google Scholar 

  67. Sun, Y., Li, W., Lu, Z., Chen, R., Ling, J., Ran, Q., Jilka, R. L., and Chen, X. D. (2011) Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix, FASEB J., 25, 1474–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ng, C. P., Sharif, A. R. M., Heath, D. E., Chow, J. W., Zhang, C. B., Chan–Park, M. B., Hammond, P. T., Chan, J. K. Y., and Griffith, L. G. (2014) Enhanced ex vivo expan–sion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM, Biomaterials, 35, 4046–4057.

    Article  CAS  PubMed  Google Scholar 

  69. Burns, J. S., Kristiansen, M., Kristensen, L. P., Larsen, K. H., Nielsen, M. O., Christiansen, H., Nehlin, J., Andersen, J. S., and Kassem, M. (2011) Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin–1 dependent endothelial interaction, PLoS One, 6, e21888.

    Book  Google Scholar 

  70. Hoshiba, T., Lu, H., Kawazoe, N., and Chen, G. (2010) Decellularized matrices for tissue engineering, Exp. Opin. Biol. Ther., 10, 1717–1728.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Efimenko.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 3, pp. 343–353.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novoseletskaya, E.S., Grigorieva, O.A., Efimenko, A.Y. et al. Extracellular Matrix in the Regulation of Stem Cell Differentiation. Biochemistry Moscow 84, 232–240 (2019). https://doi.org/10.1134/S0006297919030052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919030052

Keywords

Navigation