Skip to main content

Advertisement

Log in

What is “phenoptosis” and how to fight it?

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Phenoptosis is the death of an organism programmed by its genome. Numerous examples of phenoptosis are described in prokaryotes, unicellular eukaryotes, and all kingdoms of multicellular eukaryotes (animals, plants, and fungi). There are very demonstrative cases of acute phenoptosis when actuation of a specific biochemical or behavioral program results in immediate death. Rapid (taking days) senescence of semelparous plants is described as phenoptosis controlled by already known genes and mediated by toxic phytohormones like abscisic acid. In soya, the death signal is transmitted from beans to leaves via xylem, inducing leaf fall and death of the plant. Mutations in two genes of Arabidopsis thaliana, required for the flowering and subsequent formation of seeds, prevent senescence, strongly prolonging the lifespan of this small semelparous grass that becomes a big bush with woody stem, and initiate substitution of vegetative for sexual reproduction. The death of pacific salmon immediately after spawning is surely programmed. In this case, numerous typical traits of aging, including amyloid plaques in the brain, appear on the time scale of days. There are some indications that slow aging of higher animals and humans is also programmed, being the final step of ontogenesis. It is assumed that stepwise decline of many physiological functions during such aging increases pressure of natural selection on organisms stimulating in this way biological evolution. As a working hypothesis, the biochemical mechanism of slow aging is proposed. It is assumed that mitochondria-generated reactive oxygen species (ROS) is a tool to stimulate apoptosis, an effect decreasing with age the cell number (cellularity) of organs and tissues. A group of SkQ-type substances composed of plastoquinone and a penetrating cation were synthesized to target an antioxidant into mitochondria and to prevent the age-linked rise of the mitochondrial ROS level. Such targeting is due to the fact that mitochondria are the only cellular organelles that are negatively charged compared to the cytosol. SkQs are shown to strongly decrease concentration of ROS in mitochondria, prolong lifespan of fungi, invertebrates, fish, and mammals, and retard appearance of numerous traits of aging. Clinical trials of SkQ1 (plastoquinonyl decyltriphenylphosphonium) have been successfully completed so that the Ministry of Health of the Russian Federation recommends drops of very dilute (0.25 μM) solution of this antioxidant as a medicine to treat the syndrome of dry eye, which was previously considered an incurable disease developing with age. These drops are already available in drugstores. Thus, SkQ1 is the first mitochondria-targeted drug employed in medical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Δψ:

transmembrane difference of electric potentials

BLM:

bilayer planar phospholipid membrane

C12TPP:

dodecyltriphenylphosphonium

MitoQ:

ubiquinonyl decyltriphenylphosphonium

ROS:

reactive oxygen species

SkQ:

derivatives of plastoquinone and penetrating cations (Sk+)

SkQ1:

plastoquinonyl decyltriphenylphosphonium

SkQR1:

plastoquinonyl decylrhodamine 19

References

  1. Skulachev, V. P., and Ozrina, R. D. (2011) Biochemistry (Moscow), 76, 1–2.

    CAS  Google Scholar 

  2. Skulachev, V. P. (1997) Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  3. Skulachev, V. P. (1999) Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  4. Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Nat. Rev. Genet., 6, 866–872.

    PubMed  CAS  Google Scholar 

  5. Libertini, G. (2012) Biochemistry (Moscow), 77, 707–715.

    Google Scholar 

  6. Koonin, E. V., and Aravind, L. (2002) Cell Death Differ., 9, 394–404.

    PubMed  CAS  Google Scholar 

  7. Lewis, K. (2000) Microbiol. Mol. Biol. Rev., 64, 503–514.

    PubMed  CAS  Google Scholar 

  8. Skulachev, V. P. (2003) in Model Systems in Aging (Nystrom, T., and Osiewacz, H. D., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 191–238.

    Google Scholar 

  9. Severin, F. F., and Hyman, A. A. (2002) Curr. Biol., 12, R233–R235.

    PubMed  CAS  Google Scholar 

  10. Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) J. Cell Biol., 168, 257–269.

    PubMed  CAS  Google Scholar 

  11. Skulachev, V. P. (2002) Ann. N.Y. Acad. Sci., 959, 214–237.

    PubMed  CAS  Google Scholar 

  12. Severin, F. F., and Skulachev, V. P. (2009) Advances Gerontol. (Russ.), 22, 37–48.

    CAS  Google Scholar 

  13. Skulachev, V. P. (2009) Rus. Chem. J. (Russ.), LIII, 125–140.

    Google Scholar 

  14. Sukhanova, E. I., Rogov, A. G., Severin, F. F., and Zvyagilskaya, R. A. (2012) Biochemistry (Moscow), 77, 761–775.

    Google Scholar 

  15. Nooden, L. D., Guiamet, J. J., and John, I. (1997) Physiol. Plant., 101, 746–753.

    CAS  Google Scholar 

  16. Leopold, A. C., Niedergangkamien, E., and Janick, J. (1959) Plant Physiol., 34, 570–573.

    PubMed  CAS  Google Scholar 

  17. Lindoo, S. J., and Nooden, L. D. (1977) Plant Physiol., 59, 1136–1140.

    PubMed  CAS  Google Scholar 

  18. Nooden, L. D., and Murray, B. J. (1982) Plant Physiol., 69, 754–756.

    PubMed  CAS  Google Scholar 

  19. Skulachev, V. P. (2011) Aging (Albany, N.Y.), 3, 1120–1123.

    Google Scholar 

  20. Kirkwood, T. B. L., and Melov, S. (2011) Curr. Biol., 21, R701–R707.

    PubMed  CAS  Google Scholar 

  21. Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., and Abrams, S. R. (2010) Ann. Rev. Plant Biol., 61, 651–679.

    CAS  Google Scholar 

  22. Cho, D., Shin, D. J., Jeon, B. W., and Kwak, J. M. (2009) J. Plant Biol., 52, 102–113.

    CAS  Google Scholar 

  23. Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A., and Beeckman, T. (2008) Nature Genet., 40, 1489–1492.

    PubMed  CAS  Google Scholar 

  24. Weismann, A. (1889) Essays upon Heredity and Kindred Biological Problems, Clarendon Press, Oxford.

    Google Scholar 

  25. Carlquist, S. J. (1974) Island Biology, Columbia University Press, New York.

    Google Scholar 

  26. Groover, A. T. (2005) Trends Plant Sci., 10, 210–214.

    PubMed  CAS  Google Scholar 

  27. Kim, S. C., Crawford, D. J., FranciscoOrtega, J., and SantosGuerra, A. (1996) PNAS, 93, 7743–7748.

    PubMed  CAS  Google Scholar 

  28. Bohle, U. R., Hilger, H. H., and Martin, W. F. (1996) PNAS, 93, 11740–11745.

    PubMed  CAS  Google Scholar 

  29. Libbert, A. (1976) Physiology of Plants [Russian translation], Mir, Moscow.

    Google Scholar 

  30. Wodinsky, J. (1977) Science, 198, 948–951.

    PubMed  CAS  Google Scholar 

  31. Nesis, K. N. (1997) in Russian Science: to Persevere and Be Reborn (Byalko, A. V., ed.) [in Russian], Fizmatizdat, Moscow, pp. 358–365.

    Google Scholar 

  32. Dawkins, R. (1976) The Selfish Gene, Oxford University Press, New York.

    Google Scholar 

  33. Bradley, A. J., McDonald, I. R., and Lee, A. K. (1980) General Comparat. Endocrinol., 40, 188–200.

    CAS  Google Scholar 

  34. Skulachev, V. P. (2005) Vestnik RAN (Russ.), 75, 831–843.

    Google Scholar 

  35. Austad, S. N. (2004) Aging Cell, 3, 249–251.

    PubMed  CAS  Google Scholar 

  36. Maldonado, T. A., Jones, R. E., and Norris, D. O. (2000) Brain Res., 858, 237–251.

    PubMed  CAS  Google Scholar 

  37. Maldonado, T. A., Jones, R. E., and Norris, D. O. (2002) J. Neurobiol., 53, 11–20.

    PubMed  CAS  Google Scholar 

  38. Maldonado, T. A., Jones, R. E., and Norris, D. O. (2002) J. Neurobiol., 53, 21–35.

    PubMed  CAS  Google Scholar 

  39. Kipling, D., Davis, T., Ostler, E. L., and Faragher, R. G. A. (2004) Science, 305, 1426–1431.

    PubMed  CAS  Google Scholar 

  40. Terzibasi, E., Valenzano, D. R., and Cellerino, A. (2007) Exp. Gerontol., 42, 81–89.

    PubMed  CAS  Google Scholar 

  41. Comfort, A. (1979) The Biology of Senescence, Elsevier, New York.

    Google Scholar 

  42. Schopenhauer, A. (1993) The World as Will and Representation [Russian translation], Moskovskii Klub, Moscow.

    Google Scholar 

  43. Darwin, C. (1871) The Descent of Man, and Selection in Relation to Sex, D. Appleton and Company, New York.

    Google Scholar 

  44. Medawar, P. B. (1952) An Unsolved Problem of Biology, Published for the College by H. K. Lewis, London.

    Google Scholar 

  45. Bowles, J. T. (1998) Med. Hypotheses, 51, 179–221.

    PubMed  CAS  Google Scholar 

  46. Bowles, J. T. (2000) Med. Hypotheses, 54, 236–339.

    Google Scholar 

  47. Loison, A., Festa-Bianchet, M., Gaillard, J. M., Jorgenson, J. T., and Jullien, J. M. (1999) Ecology, 80, 2539–2554.

    Google Scholar 

  48. Bonduriansky, R., and Brassil, C. E. (2002) Nature, 420, 377–377.

    PubMed  CAS  Google Scholar 

  49. Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Biochemistry (Moscow), 77, 754–760.

    Google Scholar 

  50. Khokhlov, A. N. (2009) Ros. Khim. Zh., LIII, 111–117.

    Google Scholar 

  51. Vreeland, R. H., Rosenzweig, W. D., and Powers, D. W. (2000) Nature, 407, 897–900.

    PubMed  CAS  Google Scholar 

  52. George, J. C., Bada, J., Zeh, J., Scott, L., Brown, S. E., O’Hara, T., and Suydam, R. (1999) Canad. J. Zool., 77, 571–580.

    Google Scholar 

  53. Buffenstein, R. (2005) J. Gerontol. A. Biol. Sci. Med. Sci., 60, 1369–1377.

    PubMed  Google Scholar 

  54. Dawkins, R. (1989) in Artificial Life Proceedings Reading (Langton, C., ed.) Addison Wesley, Massachusetts, pp. 201–220.

    Google Scholar 

  55. Kirschner, M., and Gerhart, J. (1998) PNAS, 95, 8420–8427.

    PubMed  CAS  Google Scholar 

  56. Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2010) Membrane Bioenergetics [in Russian], Moscow University Publishers, Moscow.

    Google Scholar 

  57. Mufazalov, I. A., Penkov, D. N., Chernyak, B. V., Pletyushkina, O. Yu., Vyssokih, M. Yu., Kirpichnikov, M. P., Dolgikh, D. A., Kruglov, A. A., Kuprash, D. V., Skulachev, V. P., and Nedospasov, S. A. (2009) Mol. Biol. (Moscow), 43, 648–656.

    CAS  Google Scholar 

  58. Sharonov, G. V., Feofanov, A. V., Bocharova, O. V., Astapova, M. V., Dedukhova, V. I., Chernyak, B. V., Dolgikh, D. A., Arseniev, A. S., Skulachev, V. P., and Kirpichnikov, M. P. (2005) Apoptosis, 10, 797–808.

    PubMed  CAS  Google Scholar 

  59. Mott, J. L., Zhang, D., Freeman, J. C., Mikolajczak, P., Chang, S. W., and Zassenhaus, H. P. (2004) Biochem. Biophys. Res. Commun., 319, 1210–1215.

    PubMed  CAS  Google Scholar 

  60. Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly, Y. M., Gidlof, S., Oldfors, A., Wibom, R., Tornell, J., Jacobs, H. T., and Larsson, N. G. (2004) Nature, 429, 417–423.

    PubMed  CAS  Google Scholar 

  61. Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., Panzer, K., Wohlgemuth, S. E., Hofer, T., Seo, A. Y., Sullivan, R., Jobling, W. A., Morrow, J. D., van Remmen, H., Sedivy, J. M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C., and Prolla, T. A. (2005) Science, 309, 481–484.

    PubMed  CAS  Google Scholar 

  62. Harman, D. (1956) J. Gerontol., 11, 298–300.

    PubMed  CAS  Google Scholar 

  63. Emanuel, N. M. (1975) Izv. AN SSSR, 785–794.

  64. Szilard, L. (1959) PNAS, 45, 30–45.

    PubMed  CAS  Google Scholar 

  65. Skulachev, V. P., and Longo V. D. (2005) Ann. N. Y. Acad. Sci., 1057, 145–164.

    PubMed  CAS  Google Scholar 

  66. Szczesny, B., Tann, A. W., and Mitra, S. (2010) Mech. Ageing Develop., 131, 330–337.

    CAS  Google Scholar 

  67. Brunet-Rossinni, A. K., and Austad, S. N. (2004) Biogerontology, 5, 211–222.

    PubMed  CAS  Google Scholar 

  68. Ku, H. H., Brunk, U. T., and Sohal, R. S. (1993) Free Radic. Biol. Med., 15, 621–627.

    PubMed  CAS  Google Scholar 

  69. Barja, G. (1998) Ann. N. Y. Acad. Sci., 854, 224–238.

    PubMed  CAS  Google Scholar 

  70. Barja, G., and Herrero, A. (2000) FASEB J., 14, 312–318.

    PubMed  CAS  Google Scholar 

  71. Lambert, A. J., Boysen, H. M., Buckingham, J. A., Yang, T., Podlutsky, A., Austad, S. N., Kunz, T. H., Buffenstein, R., and Brand, M. D. (2007) Aging Cell, 6, 607–618.

    PubMed  CAS  Google Scholar 

  72. Dilman, V. M. (1978) Mech. Ageing Dev., 8, 153–173.

    PubMed  CAS  Google Scholar 

  73. Dilman, V. M. (1982) Large Biological Clock [in Russian], Znaniye, Moscow.

    Google Scholar 

  74. Longo, V. D., and Finch, C. E. (2003) Science, 299, 1342–1346.

    PubMed  Google Scholar 

  75. Kim, E. B., Fang, X. D., Fushan, A. A., Huang, Z. Y., Lobanov, A. V., Han, L. J., Marino, S. M., Sun, X. Q., Turanov, A. A., Yang, P. C., Yim, S. H., Zhao, X., Kasaikina, M. V., Stoletzki, N., Peng, C. F., Polak, P., Xiong, Z. Q., Kiezun, A., Zhu, Y. B., Chen, Y. X., Kryukov, G. V., Zhang, Q., Peshkin, L., Yang, L., Bronson, R. T., Buffenstein, R., Wang, B., Han, C. L., Li, Q. Y., Chen, L., Zhao, W., Sunyaev, S. R., Park, T. J., Zhang, G. J., Wang, J., and Gladyshev, V. N. (2011) Nature, 479, 223–227.

    PubMed  CAS  Google Scholar 

  76. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.

    PubMed  CAS  Google Scholar 

  77. Green, D. E. (1974) Biochim. Biophys. Acta, 346, 27–78.

    PubMed  CAS  Google Scholar 

  78. Liberman, E. A., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 30–42.

    PubMed  CAS  Google Scholar 

  79. Severin, S. Ye., Skulachev, V. P., and Yaguzhinsky, L. S. (1970) Biokhimiya, 35, 1250–1257.

    CAS  Google Scholar 

  80. Burns, R. J., Smith, R. A., and Murphy, M. P. (1995) Arch. Biochem. Biophys., 322, 60–68.

    PubMed  CAS  Google Scholar 

  81. Smith, R. A., Porteous, C. M., Coulter, C. V., and Murphy, M. P. (1999) Eur. J. Biochem., 263, 709–716.

    PubMed  CAS  Google Scholar 

  82. Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.

    PubMed  CAS  Google Scholar 

  83. Murphy, M. P., and Smith, R. A. (2007) Annu. Rev. Pharmacol. Toxicol., 47, 629–656.

    PubMed  CAS  Google Scholar 

  84. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1273–1287.

    CAS  Google Scholar 

  85. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) Biochim. Biophys. Acta, 1787, 437–461.

    PubMed  CAS  Google Scholar 

  86. James, A. M., Cocheme, H. M., Smith, R. A., and Murphy, M. P. (2005) J. Biol. Chem., 280, 21295–21312.

    PubMed  CAS  Google Scholar 

  87. O’Malley, Y., Fink, B. D., Ross, N. C., Prisinzano, T. E., and Sivitz, W. I. (2006) J. Biol. Chem., 281, 39766–39775.

    PubMed  Google Scholar 

  88. Doughan, A. K., and Dikalov, S. I. (2007) Antioxid. Redox. Signal., 9, 1825–1836.

    PubMed  CAS  Google Scholar 

  89. Kruk, J., Jemiola-Rzeminska, M., and Strzalka, K. (1997) Chem. Phys. Lipids, 87, 73–80.

    CAS  Google Scholar 

  90. Roginsky, V., Barsukova, T., Loshadkin, D., and Pliss, E. (2003) Chem. Phys. Lipids, 125, 49–58.

    PubMed  CAS  Google Scholar 

  91. Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.

    CAS  Google Scholar 

  92. Fink, B. D., Herlein, J. A., Yorek, M. A., Fenner, A. M., Kerns, R. J., and Sivitz, W. I. (2012) J. Pharm. Exp. Therap., DOI: 10.1124/jpet.112.195586.

  93. Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Biochim. Biophys. Acta, 1797, 878–889.

    PubMed  CAS  Google Scholar 

  94. Roginsky, V. A., Tashlitsky, V. N., and Skulachev, V. P. (2009) Aging (Albany, NY), 1, 481–489.

    CAS  Google Scholar 

  95. Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Zorov, D. B., and Skulachev, V. P. (2011) Curr. Drug Targets, 12, 800–826.

    PubMed  CAS  Google Scholar 

  96. Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) PNAS, 107, 663–668.

    PubMed  CAS  Google Scholar 

  97. Anisimov, V. N., Egorov, M. V., Krasilshchikova, M. S., Lyamzaev, K. G., Manskikh, V. N., Moshkin, M. P., Novikov, E. A., Popovich, I. G., Rogovin, K. A., Shabalina, I. G., Shekarova, O. N., Skulachev, M. V., Titova, T. V., Vygodin, V. A., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2011) Aging (Albany NY), 3, 1110–1119.

    CAS  Google Scholar 

  98. Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Y., Saprunova, V. B., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1329–1342.

    CAS  Google Scholar 

  99. Stefanova, N. A., Fursova, A., and Kolosova, N. G. (2010) J. Alzheimer’s Dis., 21, 479–491.

    CAS  Google Scholar 

  100. Skulachev, V. P. (2012) J. Alzheimer’s Dis., 28, 283–289.

    CAS  Google Scholar 

  101. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A., Grigorian, E. N., Grishanova, A. Y., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Y. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1317–1328.

    CAS  Google Scholar 

  102. Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. B., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasilyeva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1288–1299.

    CAS  Google Scholar 

  103. Plotnikov, E. Y., Silachev, D. N., Chupyrkina, A. A., Danshina, M. I., Jankauskas, S. S., Morosanova, M. A., Stelmashook, E. V., Vasileva, A. K., Goryacheva, E. S., Pirogov, Y. A., Isaev, N. K., and Zorov, D. B. (2010) Biochemistry (Moscow), 75, 145–150.

    CAS  Google Scholar 

  104. Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Biochim. Biophys. Acta, 1812, 77–86.

    PubMed  CAS  Google Scholar 

  105. Zorov, D. B., Plotnikov, E. Y., Yankauskas, S. S., Isaev, N. K., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Pul’kova, N. V., Zorov, S. D., and Morosanova, M. A. (2012) Biochemistry (Moscow), 77, 742–753.

    Google Scholar 

  106. Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Y., Fetisova, E. K., Ivanova, O. Y., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashev, A. L., Pletjushkina, O. Y., Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1300–1316.

    CAS  Google Scholar 

  107. Sommer, S. S. (1994) Hum. Mutat., 3, 166–169.

    PubMed  CAS  Google Scholar 

  108. Manskikh, V. N. (2004) Essays on Evolutionary Oncology [in Russian], SibGMU, Tomsk.

    Google Scholar 

  109. Lihtenstein, A. V. (2005) Biochemistry (Moscow), 70, 1055–1064.

    Google Scholar 

  110. Manskikh, V. N. (2009) Ros. Khim. Zh. (Russ.), LIII, 57–63.

    Google Scholar 

  111. MacCay, C. M., and Crowell, M. F. (1934) Sci. Mon., 39, 405–414.

    Google Scholar 

  112. MacCay, C. M., Crowell, M. F., and Maynard, L. A. (1935) J. Nutr., 10, 63–79.

    Google Scholar 

  113. MacCay, C. M., Maynard, L. A., and Barnes, L. L. (1943) Arch. Biochem., 2, 469–479.

    Google Scholar 

  114. Robertson, T. B., Marston, R., and Walters, J. W. (1934) Aust. J. Exp. Biol. Med. Sci., 12, 33.

    CAS  Google Scholar 

  115. Will, L. C., and MacCay, C. M. (1943) Arch. Biochem., 2, 481–484.

    CAS  Google Scholar 

  116. Mair, W., Goymer, P., Pletcher, S. D., and Partridge, L. (2003) Science, 301, 1731–1733.

    PubMed  CAS  Google Scholar 

  117. Libert, S., and Pletcher, S. D. (2007) Cell, 131, 1231–1234.

    PubMed  CAS  Google Scholar 

  118. Libert, S., Zwiener, J., Chu, X., Vanvoorhies, W., Roman, G., and Pletcher, S. D. (2007) Science, 315, 1133–1137.

    PubMed  CAS  Google Scholar 

  119. Carr, C. J., King, J. T., and Visscher, B. (1949) Proc. Fedn. Am. Soc. Exp. Biol., 8, 22.

    Google Scholar 

  120. Stuchlikova, E., Juricova-Horakova, M., and Deyl, Z. (1975) Exp. Gerontol., 10, 141–144.

    PubMed  CAS  Google Scholar 

  121. Richie, J. P., Jr., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N., and Zimmerman, J. A. (1994) FASEB J., 8, 1302–1307.

    PubMed  CAS  Google Scholar 

  122. Miller, R. A., Buehner, G., Chang, Y., Harper, J. M., Sigler, R., and Smith-Wheelock, M. (2005) Aging Cell, 4, 119–125.

    PubMed  CAS  Google Scholar 

  123. Sanz, A., Caro, P., Ayala, V., Portero-Otin, M., Pamplona, R., and Barja, G. (2006) FASEB J., 20, 1064–1073.

    PubMed  CAS  Google Scholar 

  124. Caro, P., Gomez, J., Sanchez, I., Garcia, R., Lopez-Torres, M., Naudi, A., Portero-Otin, M., Pamplona, R., and Barja, G. (2009) Biogerontology, 10, 579–592.

    PubMed  CAS  Google Scholar 

  125. Edman, U., Garcia, A. M., Busuttil, R. A., Sorensen, D., Lundell, M., Kapahi, P., and Vijg, J. (2009) Aging Cell, 8, 331–338.

    PubMed  CAS  Google Scholar 

  126. Skulachev, V. P. (2011) Aging (Albany, NY), 3, 1045–1050.

    CAS  Google Scholar 

  127. Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., Allison, D. B., Cruzen, C., Simmons, H. A., Kemnitz, J. W., and Weindruch, R. (2009) Science, 325, 201–204.

    PubMed  CAS  Google Scholar 

  128. Sun, D., Muthukumar, A. R., Lawrence, R. A., and Fernandes, G. (2001) Clin. Diagn. Lab. Immunol., 8, 1003–1011.

    PubMed  CAS  Google Scholar 

  129. Gardner, E. M. (2005) J. Gerontol. A. Biol. Sci. Med. Sci., 60, 688–694.

    PubMed  Google Scholar 

  130. Obukhova, L. A., Skulachev, V. P., and Kolosova, N. G. (2009) Aging (Albany NY), 1, 389–401.

    CAS  Google Scholar 

  131. Demianenko, I. A., Vasilieva, T. V., Domnina, L. V., Dugina, V. B., Yegorov, M. V., Ivanova, O. Yu., Ilinskaya, O. P., Pletiushkina, O. Yu., Popova, E. N., Saharov, I. Yu., Fedorov, A. V., and Chernyak, B. V. (2010) Biochemistry (Moscow), 75, 274–280.

    CAS  Google Scholar 

  132. Hopkin, K. (2003) Sci. Aging Knowledge Environ., 2003, NS4.

    PubMed  Google Scholar 

  133. Hamilton, W. D. (1964) J. Theor. Biol., 7, 1–16.

    PubMed  CAS  Google Scholar 

  134. Hamilton, W. D. (1964) J. Theor. Biol., 7, 17–52.

    PubMed  CAS  Google Scholar 

  135. Dawkins, R. (2010) Extended Phenotype. Long Arm of the Gene [Russian translation], Astrel, Moscow.

    Google Scholar 

  136. Eng, P. M., Rimm, E. B., Fitzmaurice, G., and Kawachi, I. (2002) Am. J. Epidemiol., 155, 700–709.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Skulachev.

Additional information

Original Russian Text © V. P. Skulachev, 2012, published in Biokhimiya, 2012, Vol. 77, No. 7, pp. 827–846.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skulachev, V.P. What is “phenoptosis” and how to fight it?. Biochemistry Moscow 77, 689–706 (2012). https://doi.org/10.1134/S0006297912070012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912070012

Key words

Navigation