Skip to main content
Log in

Using Global Transcription Machinery Engineering (GTME) and Site-Saturation Mutagenesis Technique to Improve Ethanol Yield of Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The SPT15 gene of Saccharomyces cerevisiae obtained using site-saturation mutagenesis was connected to the expression vector pYES2NTc. Then, the mutant library was constructed. Twelve single point mutant genes were obtained, and the recombinant plasmids were constructed with wild gene SPT15 and control gene. The S. cerevisiae strains were obtained by converting recombinant plasmids into the S. cerevisiae INVSC1 by lithium acetate method. Using glucose as substrate, the recombinant S. cerevisiae was inoculated and fermented to determine its ethanol yield. The ethanol yields of recombinant S. cerevisiae INVSC1-SPT15-K127M and S. cerevisiae INVSC1-SPT15-K127N were greatly increased by 43.0 ± 0.9 and 43.7 ± 0.2 g/L, i.e., 26.5 and 28.5%, respectively, compared with that of the control strain S. cerevisiae INVSC1-Neo. The site-saturation mutagenesis technique was used instead of random mutagenesis, and 2 mutant strains with phenotypic improvements were screened in the limited mutant library, which indicated that 127 amino acids had an important effect on the binding efficiency of Spt15 and TATA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kasavi, C., Eraslan, S., Arga, K. Y., Oner, E. T. and Kirdar, B., BMC Syst. Biol., 2014, vol. 8, p. 90.

    Article  Google Scholar 

  2. Deparis, Q., Claes, A., Foulquie-Moreno, M. R. and Thevelein, J. M., FEMS Yeast Res., 2017, vol. 17, no. 4, pp. 1–17.

    Article  CAS  Google Scholar 

  3. Alper, H. and Stephanopoulos, G., Metab Eng., 2007, vol. 9, no. 3, pp. 258–267.

    Article  CAS  Google Scholar 

  4. Cadwell, R. C. and Joyce, G. F., PCR Methods Appl., 1992, vol. 2, no. 1, pp. 28–33.

    Article  CAS  Google Scholar 

  5. Crameri, A., Raillard, S. A., Bermudez, E. and Stemmer, W. P., Nature, 1998, vol. 391, no. 6664, pp. 288–291.

    Article  CAS  Google Scholar 

  6. Bhaumik, S. R. and Green, M. R., Mol. Cell Biol., 2002, vol. 22, no. 21, pp. 7365–7371.

    Article  CAS  Google Scholar 

  7. Hallborn, J., Walfridsson, M., Airaksinen, U., Ojamo, H., Hahn-Hagerdal, B., Penttila, M. and Kerasnen, S., Biotechnology (N. Y.), 1991, vol. 9, no. 11, pp. 1090–1095.

    Article  CAS  Google Scholar 

  8. Yang, J., Bae, J. Y., Lee, Y. M., Kwon, H., Moon, H. Y., Kang, H. A., et al., Biotechnol. Bioeng., 2011, vol. 108, no. 8, pp. 1776–1787.

    Article  CAS  Google Scholar 

  9. El-Rotail, A., Zhang, L., Li, Y., Liu, S. P. and Shi, G. Y., AMB Express, 2017, vol. 7, no. 1, p. 111.

    Article  Google Scholar 

  10. Tan, F., Wu, B., Dai, L., Qin, H., Shui, Z., Wang, J., et al., Microb. Cell Fact., 2016, vol. 15. p. 4. https://doi.org/10.1186/s12934-015-0398-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Darst, R. P., Dasgupta, A., Zhu, C., Hsu, J. Y., Vroom, A., Muldrow, T. and Auble, D. T., J. Biol. Chem., 2003, vol. 278, no. 15, pp. 13216–13226.

    Article  CAS  Google Scholar 

  12. Zheng, L., Baumann, U. and Reymond, J. L., Nucleic Acids Res., 2004, vol. 32, no. 14, p. e115.

    Article  Google Scholar 

  13. Gietz, R. D., Schiestl, R. H., Willems, A. R. and Woods, R. A., Yeast, 1995, vol. 11, no. 4, pp. 355–360.

    Article  CAS  Google Scholar 

  14. Gietz, R. D. and Woods R. A., Methods Mol. Biol., 2006, vol. 313, pp. 107–120.

    CAS  PubMed  Google Scholar 

  15. Seong, Y. J., Park, H., Yang, J., Kim, S. J., Choi, W., Kim, K. H. and Park, Y. C., Appl. Microbiol. Biotechnol., 2017, vol. 101, no. 9, pp. 3567–3575.

    Article  CAS  Google Scholar 

  16. Hou, L., Cao, X., Wang, C. and Lu, M., Lett. Appl. Microb-iol., 2009, vol. 49, no. 1, pp. 14–19.

    Article  Google Scholar 

Download references

Funding

This work was supported by Research Planning Project of Basic and Advanced Technology of Henan Province (nos. 20181847 and 202102310022), the Open Project Program of the State Key Laboratory of Motor Vehicle Biofuel Technology (nos. KFKT2018001, KFKT2018002) and Natural Science Foundation of Henan Educational Committee (nos. 18A180025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Ke or F. Hui.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, T., Liu, J., Zhao, S. et al. Using Global Transcription Machinery Engineering (GTME) and Site-Saturation Mutagenesis Technique to Improve Ethanol Yield of Saccharomyces cerevisiae . Appl Biochem Microbiol 56, 563–568 (2020). https://doi.org/10.1134/S0003683820050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820050087

Keywords:

Navigation