Skip to main content
Log in

Formation of bioactive highly porous polymer matrixes for tissue engineering

  • Materials for Insuring Human Life Activity and Environment Protection
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The processes of fabrication of highly porous (60–90 vol %) bioactive heparin-containing polylactic scaffolds in supercritical carbon dioxide followed by their hydrophilization by dielectric barrier discharge plasma treatment in the atmosphere were studied. A homogeneous distribution of heparin (HP) over the polymer volume was demonstrated by spatially resolved Raman scattering (RS) spectroscopy. The kinetics of heparin release from the scaffolds in distilled water was studied by spectrophotometry. A virtually linear increase in heparin concentration in a solution was shown from the second until the 15th day of experiments. Comparative in vitro study of cytotoxicity and matrix properties of pure polymer and heparin-containing scaffolds using NIH 3T3 mice fibroblast cultures demonstrated a positive effect of heparin distribution over the polylactic scaffolds on both cell adhesion and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hench, L.L. and Johns, J.R., Biomaterials, Artificial Organs and Tissue Engineering (PBK) Taylor and Francis, 2005.

    Google Scholar 

  2. Biosovmestimye materialy (Biocompatible Materials) Sevast’yanov, V.I. and Kirpichnikov, M.P., Eds., Moscow: Medits. Inform. Agent., 2011.

    Google Scholar 

  3. Atala, A., Lanza, R., Thompson, J., and Nerem, R., Principles of Regenerative Medicine, Boston: Academic, 2008.

    Google Scholar 

  4. Repin, V.S., Rzhaninova, A.A., and Shamenkov, D.A., Embrional’nye stvolovye kletki: fundamental’naya biologiya i meditsina (Embrional Stem Cells: Fundamental Biology and Medicine), Moscow: Remeteks, 2002.

    Google Scholar 

  5. Biologiya stvolovykh kletok i kletochnye tekhnologii (Biology of Stem Cells and Cell Technologies), Paltsev, M.A., Ed., Moscow: Meditsina, 2009.

    Google Scholar 

  6. Bhattarai, N., Gunn, J., and Zhang, M., Chitosanbased hydrogels for controlled, localized drug delivery, Adv. Drug. Deliv. Rev., 2010, vol. 62, no. 1, pp. 83–99.

    Article  CAS  Google Scholar 

  7. Lowson, M.A., Barralet, J.E., Wang, L., Shelton, R.M., and Triffitt, J.T., Adhesion and growth of bone marrow stromal cells on modified alginate hydrogel, Tissue Engineering, 2004, vol. 10, pp. 1480–1491.

    Google Scholar 

  8. Perova, N.V., Porunova, Yu.V., Ur’yash, V.F., Faminskaya, L.A., Krasheninnikov, M.E., Rasulov, M.F., Onishchenko, N.A., Sevastyanov, V.O., and Shumakov, V.I., Biodegradable collagen matrix Spherogel for cell transplantation, Perspekt. Mater., 2004, no. 2, pp. 52–59.

    Google Scholar 

  9. Karageorgiou, V., Meinel, L., Hofmann, S., Malhotra, A., and Volloch, V., Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells, J. Biomed. Mater. Res., A, 2004, vol. 71, pp. 528–537.

    Article  Google Scholar 

  10. Shih, H.N., Fang, J.F., Chen, J.H., Yang, Ch.L., Chen, Y.H., Sung, T.H., and Shih, L.Y., Reduction in experimental peridural adhesion with the use of crosslinked hyaluronate/collagen membrane, J. Biomed. Mater. Res., B, 2004, vol. 71, pp. 421–428.

    Article  Google Scholar 

  11. Vert, M., Li, M.S., Spenlehauer, G., and Guerin, P., Bioresorbability and biocompatibility of aliphatic polyesters, J. Mater. Science: Mater. Med., 1992, vol. 3, pp. 432–436.

    Article  CAS  Google Scholar 

  12. Fraza, E.J. and Schmitt, E.F., A new absorbable suture, J. Biomed. Mater. Res., 1971, vol. 1, pp. 43–58.

    Article  Google Scholar 

  13. Temenoff, J.S. and Mikos, A.G., Tissue engineering for regeneration of articular cartilage, Biomaterials, 2000, vol. 21, pp. 431–440.

    Article  CAS  Google Scholar 

  14. Guarino, V., Causa, F., and Ambrosio, L., Bioactive scaffolds for bone and ligament tissue, Expert Rev. Medical Devices, 2007, vol. 4, pp. 405–418.

    Article  CAS  Google Scholar 

  15. Hutmacher, D.W., Schantz, J.T., Lam, C.X.F., Tan, K.C., and Lim, T.C., State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, J. Tissue Eng. Regen. Med., 2007, vol. 1, pp. 245–260.

    Article  CAS  Google Scholar 

  16. Karageorgiou, V. and Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 2005, vol. 26, pp. 5474–5491.

    Article  CAS  Google Scholar 

  17. Mooney, D.J., Mazzoni, C.L., Breuer, C., McNamara, K., Hern, D., and Vacanti, J.P., Stabilized polyglycolic acid fibrebased tubes for tissue engineering, Biomaterials, 1996, vol. 17, pp. 115–124.

    Article  CAS  Google Scholar 

  18. Mikos, A.G. and Temenoff, J.S., Formation of highly porous biodegradable scaffolds for tissue engineering, J. Biotechnol., 2000, vol. 3, no. 2, pp. 114–119.

    Google Scholar 

  19. Nam, Y.S. and Park, T.G., Biodegradable polymeric microcellular foams by modified thermally induced phase separation method, Biomaterials, 1999, vol. 20, pp. 1783–1790.

    Article  CAS  Google Scholar 

  20. Li, M., Mondrinos, M.J., Gandhia, M.R., Kob, F.K., Weiss, A.S., and Lelkes, P.I., Electrospun protein fibers as matrices for tissue engineering, Biomaterials, 2006, vol. 27, pp. 2705–2715.

    Article  CAS  Google Scholar 

  21. Mooney, D.J., Baldwin, D.F., Suh, N.P., Vacanti, J.P., and Langer, R., Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials, 1996, vol. 17, pp. 1417–1422.

    Article  CAS  Google Scholar 

  22. Popov, V.K., Krasnov, A.P., Volozhin, A.I., and Howdle, S.M., Novel bioactive composites for osseous tissue regeneration, Perspekt. Mater., 2004, no. 4, pp. 49–57.

    Google Scholar 

  23. Howdle, S.M., Watson, M.S., Whitaker, M.J., Popov, V.K., Davies, M.C., Mandel, F.S., Wang, J.D., and Shakesheff, K.M., Supercritrical fluid mixing: Preparation of thermally sensitive polymer composites containing bioactive materials, Chem. Commun., 2001, no. 1, pp. 109–110.

    Google Scholar 

  24. Gumerov, F.M., Sabirzyanov, A.N., and Gumerova, G.I., Sub-i sverkhkriticheskie flyuidy v protsessakh pererabotki polimerov (Sub- and Supercritical Fluids in Polymer Treatment Processes), Kazan: FEN, 2000.

    Google Scholar 

  25. Bogorodskii, S.E., Krotova, L.I., Mironov, A.V., and Popov, V.K., Fabrication of highly porous bioresorbable matrixes using supercritical carbon dioxide, Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 2013, vol. 8, no. 1, pp. 46–56.

    Google Scholar 

  26. Plasma Deposition, Treatment and Etching of Polymers, d’Agostino, R., Ed., London: Academic, 1990.

    Google Scholar 

  27. Norrby, K. and Nordenhem, A., Dalteparin,a lowmolecularweight heparin, promotes angiogenesis mediated by heparin-binding VEGF-A in vivo, APMIS, 2010, vol. 118, pp. 949–957.

    Article  CAS  Google Scholar 

  28. Stephenson, J., Janairo, R.R.R., Lee, H., and Song, Li., The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds, Biomaterials, 2010, vol. 31, pp. 3536–3542.

    Article  Google Scholar 

  29. Luo, W., Shitaye, H., Friedman, M., Bennett, C.N., Miller, J., MacDougald, O.A., and Hankenson, K.D., Disruption of cell matrix interactions by heparin enhances mesenchymal progenitor adipocyte differentiation, Exp. Cell Res., 2008, vol. 314, pp. 3382–3391.

    Article  CAS  Google Scholar 

  30. Lawrence, D.R., Clinical Pharmacology Edinburgh: Churchill Livingstone, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Bogorodskii.

Additional information

Original Russian Text © S.E. Bogorodskii, V.N. Vasilets, L.I. Krotova, S.A. Minaeva, A.V. Mironov, E.A. Nemets, V.A. Surguchenko, V.K. Popov, V.I. Sevast’yanov, 2013, published in Perspektivnye Materialy, 2013, No. 5, pp. 44–54.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogorodskii, S.E., Vasilets, V.N., Krotova, L.I. et al. Formation of bioactive highly porous polymer matrixes for tissue engineering. Inorg. Mater. Appl. Res. 4, 448–456 (2013). https://doi.org/10.1134/S2075113313050043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113313050043

Keywords

Navigation