Skip to main content
Log in

Studies on electrochemical deposition of novel Zn–Mn–Ni ternary alloys from an ionic liquid based on choline chloride

  • New Substances, Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Ternary Zn–Mn–Ni alloy coatings were electrodeposited for the first time from a choline chloride based ionic liquid with the aim of collecting properties of binary Zn–Mn and Zn–Ni alloys into one alloy system. The effect of electrodeposition potential on the composition and corrosion performance of the obtained ternary Zn–Mn–Ni deposits was investigated and contrasted with the characteristics of Zn–Mn and Zn–Ni deposits. Cyclic voltammetry revealed that the deposition of ternary Zn–Mn–Ni alloys behaved differently from the deposition of binary Zn–Mn and Zn–Sn alloys and that Mn deposition takes place at positive potentials in the Zn–Mn–Ni electrolyte than in the Zn–Mn electrolyte due to the presence of Ni2+ ions in the electrolyte. X-ray diffraction studies showed that the Zn–Mn–Ni ternary alloys consist of a lattice of Zn (with Mn and Ni imbedded inside) at low electrodeposition potentials and MnZn(with Ni imbedded inside) phase at high electrodeposition potentials. Chemical composition analysis show that the Mn content in the ternary Zn–Mn–Ni alloy increased with increase in electrodeposition potential, whereas Zn and Ni contents are suppressed. The corrosion tests results indicate that through addition of Ni into the Zn–Mn binary alloy, the Zn–Mn–Ni alloy tailored are more corrosion resistant than the Zn–Mn binary alloy whilst the passivation behavior is still preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bučko, M., Rogan, J., Stevanović, S.I., et al., Corros. Sci., 2011, vol. 53, p. 2861.

    Article  Google Scholar 

  2. Veeraraghavan, B., Haran, B., Kumaraguru, S., and Popov, B., J. Electrochem. Soc., 2003, vol. 150, p. B131.

    Article  Google Scholar 

  3. Kumaraguru, S., Veeraraghavan, B., and Popov, B., J. Electrochem. Soc., 2006, vol. 153, p. B253.

    Article  Google Scholar 

  4. Boshkov, N., Surf. Coat. Technol., 2003, vol. 172, p. 217.

    Article  Google Scholar 

  5. Bozzini, B., Griskonis, E., and Fanigliulo, A., Surf. Coat. Technol., 2002, vol. 154, p. 294.

    Article  Google Scholar 

  6. Boshkov, N., Petrov, K., Kovacheva, D., et al., Electrochim. Acta, 2005, vol. 51, p. 77.

    Article  Google Scholar 

  7. Srinivasan, K.N., Selvam, M., and Iyer, S.V.K., J. Appl. Electrochem., 1993, vol. 23, p. 358.

    Article  Google Scholar 

  8. Kayshap, R., Srivastava, S.N., and Srivastava, S.C., J. Appl. Electrochem., 1985, vol. 15, p. 23.

    Article  Google Scholar 

  9. Endres, F., Chem. Phys., 2002, vol. 3, p. 144.

    Google Scholar 

  10. Endres, F. and El Abedin, S.Z., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 2116.

    Article  Google Scholar 

  11. Kim, Y.S., Choi, W.Y., Jang, K.P., et al., Fluid Phase Equilib., 2005, vol. 228, p. 439.

    Article  Google Scholar 

  12. Chen, P.Y. and Hussey, C.L., Electrochim. Acta, 2007, vol. 52, p. 1857.

    Article  Google Scholar 

  13. Sylla, D., Savall, C., Gadouleau, M., et al., Surf. Coat. Technol., 2005, vol. 200, p. 2137.

    Article  Google Scholar 

  14. Basavanna, S. and Naik, Y.A., J. Appl. Electrochem., 2009, vol. 39, p. 1975.

    Article  Google Scholar 

  15. Hegde, A.C., Venkatakrishna, K., and Eliaz, N., Surf. Coat. Technol., 2010, vol. 205, p. 2031.

    Article  Google Scholar 

  16. Bajat, J.B., Petrović, A.B., and Maksimović, M.D., J. Serb. Chem. Soc., 2005, vol. 70, p. 1427.

    Article  Google Scholar 

  17. Gavrila, M., Millet, J., Mazille, H., et al., Surf. Coat. Technol., 2000, vol. 123, p. 164.

    Article  Google Scholar 

  18. Alfantazi, A.M., Page, J., and Erb, U., J. Appl. Electrochem., 1996, vol. 26, p. 1225.

    Article  Google Scholar 

  19. Fashu, S., Gu, C.D., Zhang, J.L., et al., J. Mater. Eng. Perform., 2014, vol. 24, p. 434.

    Article  Google Scholar 

  20. Fashu, S., Gu, C.D., Wang, X.L., and Tu, J.P., Surf. Coat. Technol., 2014, vol. 242, p. 34.

    Article  Google Scholar 

  21. Patterson, A.L., Phys. Rev., 1939, vol. 56, p. 978.

    Article  Google Scholar 

  22. Hosseini, M.G., Ashassi-Sorkhabi, H., and Ghiasvand, H.A.Y., Surf. Coat. Technol., 2008, vol. 202, p. 2897.

    Article  Google Scholar 

  23. Nasirpouri, F., Sanaeian, M.R., Samardak, A.S., et al., Appl. Surf. Sci., 2014, vol. 292, p. 795.

    Article  Google Scholar 

  24. Liang, J.L., Du, Y., Liao, C.Z., et al., J. Alloys Compd., 2010, vol. 489, p. 362.

    Article  Google Scholar 

  25. Ganesan, S., Prabhu, G., and Popov, B.N., Surf. Coat. Technol., 2014, vol. 238, p. 143.

    Article  Google Scholar 

  26. Müller, C., Sarret, M., and Andreu, T., J. Electrochem. Soc., 2002, vol. 149, p. C600.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fashu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fashu, S., Khan, R. Studies on electrochemical deposition of novel Zn–Mn–Ni ternary alloys from an ionic liquid based on choline chloride. Prot Met Phys Chem Surf 53, 118–126 (2017). https://doi.org/10.1134/S2070205117010051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117010051

Keywords

Navigation