Skip to main content
Log in

Comparative study of micro-arc oxidation treatment for AM, AZ and MZ magnesium alloys

  • New Substances, Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This paper introduces a novel coating process based on micro-arc oxidation (MAO) for formation of ceramic MgO layer over some newly developed magnesium alloys in an environmentally friendly electrolyte by anodization. Electrochemical corrosion testing showed that the corrosion resistance of bare AMS4429 is much better than that of AZ31HP-O and MZ due to formation of protective Nd-rich oxide layer in AMS4429 compared to less protective Al- and Zn-rich oxide films for AZ31HP-O and MZ respectively. Surprisingly, the corrosion resistance of MAO coated MZ is about 50 times higher than the bare one. The deposition, characterization and electrochemical characteristics of the fine porous MgO protective layer formed due to MAO coatings were investigated in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gray, J. and Luan, B., J. Alloys Compd., 2002, vol. 336, p. 88.

    Article  Google Scholar 

  2. Hillis, J.E., in Proc. 40th Annual Conf. of Metallurgists of Canadian Institute of Mining, Metallurgy and Petroleum, 2001, p. 3.

    Google Scholar 

  3. Gonzalez-Nunez, M.A., Nunez-Lopez, C.A., Skeldon, P., et al., Corros. Sci., 1995, vol. 37, p. 1763.

    Article  Google Scholar 

  4. Zhang, W.X., Jiang, Z.H., Li, G.Y., et al., Surf. Coat. Technol., 2008, vol. 202, p. 2570.

    Article  Google Scholar 

  5. Rie, K.T. and Whole, J., Surf. Coat. Technol., 1999, vol. 112, p. 226.

    Article  Google Scholar 

  6. High Performance Coatings for Automotive and Aerospace Industries, Hamdy Makhlouf, A.S., Ed., New York: Nova Sci. Publ., 2010.

    Google Scholar 

  7. Nanocoatings and Ultra Thin-Films: Technologies and Applications, Hamdy Makhlouf, A.S. and Tiginyanu, I., Eds., Cambridge, UK: Woodhead Publ., 201.

  8. Blawert, C., Manova, D., Stormer, M., et al., Surf. Coat. Technol., 2008, vol. 202, p. 2236.

    Article  Google Scholar 

  9. Kouisni, L., Azzi, M., Zertoubi, M., et al., Surf. Coat. Technol., 2004, vol. 185, p. 54.

    Article  Google Scholar 

  10. Chong, K.Z. and Shih, T.S., Mater. Chem. Phys., 2003, vol. 80, p. 191.

    Article  Google Scholar 

  11. Horner, J., Met. Finish., 1990, vol. 88, p. 76.

    Google Scholar 

  12. Nordlien, J., Ono, S., Masuko, N., and Nisancioglu, K., Corros. Sci., 1997, vol. 39, p. 1397.

    Article  Google Scholar 

  13. Zhang, X.P., Zhao, Z.P., Wu, F.M., et al., J. Mater. Sci., 2007, vol. 42, p. 8523.

    Article  Google Scholar 

  14. Song, G. and Atrens, A., Adv. Eng. Mater., 1999, vol. 1, p. 11.

    Article  Google Scholar 

  15. Song, G.L., Johannesson, B., and Hapugoda, S., Corros. Sci., 2004, vol. 46, p. 955.

    Article  Google Scholar 

  16. Song, G.L. and Atrens, A., Adv. Eng. Mater., 2003, vol. 5, p. 837.

    Article  Google Scholar 

  17. Sundararajan, G. and Krishna, L., Surf. Coat. Technol., 2003, vol. 167, p. 269.

    Article  Google Scholar 

  18. Guo, H.F., An, M.Z., Huo, H.B., et al., Appl. Surf. Sci., 2006, vol. 252, p. 7911.

    Article  Google Scholar 

  19. Guo, H., An, M., Xu, S., and Huo, H., Thin Solid Films, 2005, vol. 485, p. 53.

    Article  Google Scholar 

  20. Tillous, K., Toll-Duchanoy, T., Bauer-Grosse, E., et al., Surf. Coat. Technol., 2009, vol. 203, p. 2969.

    Article  Google Scholar 

  21. Liang, J., Hu, L., and Hao, J., Appl. Surf. Sci., 2007, vol. 253, p. 6939.

    Article  Google Scholar 

  22. Stippich, F., Vera, E., Wolf, G., and Berg, G., Surf. Coat. Technol., 1998, vols. 103–104, p. 29.

    Article  Google Scholar 

  23. Quach, N.-C., Uggowitzer, P.J., and Schmutz, P., Chimie, 2008, vol. 11, p. 1043.

    Article  Google Scholar 

  24. Gu, X.N., Zheng, W., Cheng, Y., and Zheng, Y.F., Acta Biomater., 2009, vol. 5, p. 2790.

    Article  Google Scholar 

  25. Liang, J., Hu, L., and Hao, J., Appl. Surf. Sci., 2007, vol. 253, p. 4490.

    Article  Google Scholar 

  26. Durdu, S., Aytac, A., and Usta, M., J. Alloys Compd., 2011, vol. 509, p. 8601.

    Article  Google Scholar 

  27. Srinivasan, P., Blawert, C., Stormer, M., and Dietzel, W., Surf. Eng., 2010, vol. 26, p. 340.

    Article  Google Scholar 

  28. Curran, J.A. and Clyne, T.W., Acta Mater., 2006, vol. 54, p. 1985.

    Article  Google Scholar 

  29. Linling, S., Yongjun, X., Kang, L., et al., Curr. Appl. Phys., 2010, vol. 10, p. 719.

    Article  Google Scholar 

  30. Prosek, T., Nazarov, A., Bexell, U., et al., Corros. Sci., 2008, vol. 50, p. 2216.

    Article  Google Scholar 

  31. Xin, Z., Kui, Z., Xing-Gang, L., et al., Trans. Nonferrous Met. Soc. China, 2012, vol. 22, p. 1018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Soliman.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, H., Hamdy, A.S. Comparative study of micro-arc oxidation treatment for AM, AZ and MZ magnesium alloys. Prot Met Phys Chem Surf 51, 620–629 (2015). https://doi.org/10.1134/S2070205115040292

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205115040292

Keywords

Navigation