Skip to main content
Log in

Formation of oxides on copper in alkaline solution and their photoelectrochemical properties

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The anodic formation of Cu(I) and Cu(II) oxides on polycrystalline copper in a deaerated alkaline solution is studied using the technique of the synchronous recording of transients of the photocurrent and polarization current. The oxide formation in a currentless mode is analyzed via the synchronous recording of photopotential and corrosion potential. It is found that copper is susceptible to corrosion oxidation due to traces of dissolved oxygen with the formation of a Cu(I) oxide. The preliminary formation of the underlayer of anodic Cu(I) oxide on copper hinders its further corrosion oxidation. It is confirmed that copper oxides Cu2O and CuO, which appear on copper in both anodic and corrosion modes of formation, are p-type semiconductors. The initial stage of anodic oxidation of copper is characterized by the formation of an intermediate compound of Cu(I), possibly CuOH, which exhibits n-type conductivity. A film of Cu(I) oxide is thin and has a band gap of 2.2 eV for indirect optical transitions. Anodic polarization in the range of potentials of CuO formation leads to the formation of a thicker oxide film, which is a mixture of Cu(I) and Cu(II) oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans, U.R., The Corrosion and Oxidation of Metals, London: Edward Arnold, 1960.

    Google Scholar 

  2. Todt, F., Korrosion und Korrosionsschutz, Berlin: Walter de Gruyter, 1961.

    Google Scholar 

  3. Kaesche, H., Die Korrosion der Metalle, Berlin: Springer, 1979.

    Google Scholar 

  4. Strehblow, H.-H. and Titze, B., Electrochim. Acta, 1980, vol. 25, no. 6, pp. 839–850.

    Article  CAS  Google Scholar 

  5. Kunze, J., Maurice, V., Klein, L.H., Strehblow, H.-H., and Marcus, P., Corros. Sci., 2004, vol. 46, no. 2, pp. 245–264.

    Article  CAS  Google Scholar 

  6. Castro Luna de Medina, A.M., Marchiano, S.L., and Arvia, A.J., J. Appl. Electrochem., 1978, vol. 8, no. 2, pp. 121–134.

    Article  Google Scholar 

  7. Ambrose, J., Barradas, R.G., and Shoesmith, D.W., J. Electroanal. Chem., 1973, vol. 47, no. 1, pp. 65–80.

    Article  CAS  Google Scholar 

  8. Chialvo, M.R.G., Marchiano, S.L., and Arvia, A.J., J. Appl. Electrochem., 1984, vol. 14, no. 2, pp. 165–175.

    Article  Google Scholar 

  9. Hampson, N.A., Lee, J.B., and MacDonald, K.J., J. Electroanal. Chem., 1971, vol. 32, no. 2, pp. 165–173.

    CAS  Google Scholar 

  10. Burke, L.D., Ahern, M.J.G., and Ryan, T.G., J. Electrochem. Soc., 1990, vol. 137, no. 2, pp. 553–561.

    Article  CAS  Google Scholar 

  11. Spravochnik po elektrokhimii (Handbook of Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  12. Vvedenskii, A.V., Cand. Sci. (Chem.) Dissertation, Voronezh: Voronezh State Univ., 1979.

    Google Scholar 

  13. North, R.F. and Pryor, M.J., Corros. Sci., 1970, vol. 10, no. 5, pp. 297–311.

    Article  CAS  Google Scholar 

  14. Kreizer, I.V., Marshakov, I.K., Tutukina, N.M., and Zartsyn, I.D., Zashch. Met., 2003, vol. 39, no. 1, pp. 35–39 [Prot. Met. Phys. Chem. Surf. (Engl. Transl.), vol. 39, no. 1, p. 30].

    Google Scholar 

  15. Pleskov, Yu.V. and Gurevich, Yu.Ya., Semiconductor Photoelectrochemistry, New York: Consultants Bureau, 1986.

    Google Scholar 

  16. Encyclopedia of Electrochemistry, vol. 6: Semiconductor Electrodes and Photoelectrochemistry, Bard, A.J., Stratmann, M., and Licht, S., Eds., Weinheim: Wiley-VCH, 2002, p. 51.

    Google Scholar 

  17. Semiconductor Electrodes, Finklea, H.O., Ed., New York: Elsevier, 1988, p. 519.

    Google Scholar 

  18. Collisi, U. and Strehblow, H.-H., J. Electroanal. Chem., 1990, vol. 284, no. 4, pp. 385–401.

    Article  CAS  Google Scholar 

  19. Chaudhary, Y.S., Argaval, A., Shrivastav, R., Satsangi, V.R., and Dass, S., Int. J. Hydrogen Energy, 2004, no. 29, pp. 131–134.

  20. Di Quarto, F., Piazza, S., and Sunseri, C., Electrochim. Acta, 1985, vol. 30, no. 3, pp. 315–324.

    Article  Google Scholar 

  21. Pointu, B., Brizaz, M., Poucet, P., Rousseau, J., and Muhlstein, N., J. Electroanal. Chem., 1981, vol. 122, p. 111.

    CAS  Google Scholar 

  22. Collisi, U. and Strehblow, H.-H., J. Electroanal. Chem, 1986, vol. 210, no. 2, pp. 213–227.

    Article  CAS  Google Scholar 

  23. Kamkin, A.N., Zhuo, G.-D., and Davydov, A.D, Zashch. Met., 2001, vol. 37, no. 1, pp. 72–78 [Prot. Met. Phys. Chem. Surf. (Engl. Transl.), vol. 37, no. 1, p. 64].

    Google Scholar 

  24. Wilhelm, S.M., Tanizawa, Y., Chang-Yi, L., and Hackerman, N., Corros. Sci., 1982, vol. 22, no. 8, pp. 791–805.

    Article  CAS  Google Scholar 

  25. Kublanovsky, V.S., Kolbasov, G.Ya., and Belinskii, V.N., J. Electroanal. Chem., 1996, vol. 415, pp. 161–163.

    Article  Google Scholar 

  26. Strehblow, H.-H., Maurice, V., and Marcus, P., Electrochim. Acta, 2001, vol. 46, pp. 3755–3766.

    Article  CAS  Google Scholar 

  27. Luk’yanchikov, A.N., Grushevskaya, S.N., Kudryashov, D.A., and Vvedenskii, A.V., RF Patent 6 6052, Byull. Izobret., 2007, no. 24.

  28. Milosev, I. and Streblow, H.-H., J. Electrochem. Soc., 2003, vol. 150, no. 11, pp. B517–B524.

    Article  CAS  Google Scholar 

  29. Abrantes, L.M., Castillo, L.M., Norman, C., and Peter, L.M., J. Electroanal. Chem., 1984, vol. 163, p. 209.

    Article  CAS  Google Scholar 

  30. Modestov, A.D., Zhou, G.-D., Ge, H.-H., and Loo, B.H., J. Electroanal. Chem., 1995, vol. 380, no. 1, p. 63.

    Article  Google Scholar 

  31. Kudryashov, D.A., Cand. Sci. (Chem.) Dissertation, Voronezh: Voronezh State Univ., 2008.

    Google Scholar 

  32. Paatsch, W., Ber. Bunsen-Ges. Phys. Chem., 1977, vol. 81, p. 645.

    CAS  Google Scholar 

  33. Bogdanowicz, R., Ryl, J., Darowicki, K., and Kosmowski, B.B., J. Solid State Electrochem., 2009, vol. 13, no. 11, p. 1639.

    Article  CAS  Google Scholar 

  34. Kudryashov, D.A., Grushevskaya, S.N., Ganzha, S.V., and Vvedenskii, A.V., Fizikokhim. Poverkhnost. Zashch. Mater., 2009, vol. 45, no. 5, p. 451 [Prot. Met. Phys. Chem. Surf. (Engl. Transl.), vol. 45, no. 5, p. 501].

    Google Scholar 

  35. Kudryashov, D.A., Grushevskaya, S.N., and Vvedenskii, A.V., Fizikokhim. Poverkhnost. Zashch. Mater., 2007, vol. 43, no. 6, p. 652 [Prot. Met. Phys. Chem. Surf. (Engl. Transl.), vol. 43, no. 6, p. 591].

    Google Scholar 

  36. Vvedenskii, A., Grushevskaya, S., Kudryashov, D., and Ganzha, S., Surf. Interface Anal., 2008, vol. 40, pp. 636–640.

    Article  CAS  Google Scholar 

  37. Kudryashov, D.A., Grushevskaya, S.N., Olalekan, O., Kukhareva, N.V., and Vvedenskii, A.V., Fizikokhim. Poverkhnost. Zashch. Mater., 2010, vol. 46, no. 1, p. 28 [Prot. Met. Phys. Chem. Surf. (Engl. Transl.), vol. 46, no. 1, p. 32].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vvedenskii.

Additional information

Original Russian Text © S.V. Ganzha, S.N. Maksimova, S.N. Grushevskaya, A.V. Vvedenskii, 2011, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2011, Vol. 47, No. 2, pp. 164–175.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganzha, S.V., Maksimova, S.N., Grushevskaya, S.N. et al. Formation of oxides on copper in alkaline solution and their photoelectrochemical properties. Prot Met Phys Chem Surf 47, 191–202 (2011). https://doi.org/10.1134/S2070205111020080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205111020080

Keywords

Navigation