Skip to main content
Log in

Electrochemical properties of α-Fe + Fe3C nanocrystalline composites in acidic environments

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Regularities of the physicochemical behavior of α-Fe + Fe3C nanocomposites in a concentration range of cementite from 9 to 92 wt % in sulfate and chloride solutions are studied. Nanocrystalline state (∼40 nm) is found to intensify the active dissolution of α-Fe + Fe3C alloys and not noticeably affect the hydrogen evolution in acidic environments. With an increase in the cementite content or when it forms a reticular structure, the catalytic activity of α-Fe + Fe3C nanocrystalline composites with respect to the hydrogen evolution increases. Cementite manifests a higher overpotential of dissolution in both sulfate and chloride solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rofagha, R., Langer, R., El-Sherik, A.M., et al., Scr. Metall. Mater., 1991, vol. 25, p. 2867.

    Article  CAS  Google Scholar 

  2. Wang, S., Lewis, J.K., Roberge, P.R., and Erb, U., Scr. Metall. Mater., 1994, vol. 32, p. 735.

    Google Scholar 

  3. Kim, S.H., Aust, K.T., Erb, U., et al., Scr. Mater., 2003, vol. 48, p. 1379.

    Article  CAS  Google Scholar 

  4. Barbucci, A., Farne, G., Matteazzi, P., et al., Corros. Sci., 1999, vol. 41, p. 463.

    Article  CAS  Google Scholar 

  5. Wang, S.G., Shen, C.B., and Long, K., J. Phys. Chem. B, 2006, vol. 110, p. 377.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, S.G., Shen, C.B., and Long, K., J. Phys. Chem. B, 2005, vol. 109, p. 2499.

    Article  CAS  PubMed  Google Scholar 

  7. Li, M.C., Jiang, L.L., Zhang, W.Q., and Shen, J.N., J. Solid State Electrochem., 2007, vol. 11, p. 1319.

    Article  CAS  Google Scholar 

  8. Syugaev, A.V., Lomaeva, S.F., Shuravin, A.S., et al., Korroz.: Zashch., Mater., 2007, no. 1, p. 2.

  9. Syugaev, A.V., Lomaeva, S.F., and Reshetnikov, S.M., Zashch. Met., 2008, vol. 44, no. 1, p. 58.

    Google Scholar 

  10. Syugaev, A.V., Lomaeva, S.F., Reshetnikov, S.M., et al., Fizikokhim. Poverkhn. Zashch. Mater., 2008, vol. 44, no. 4, p. 395.

    Google Scholar 

  11. Li, Y., Wang, F.G., and Liu, G., Corrosion, 2004, vol. 60, p. 891.

    Article  CAS  Google Scholar 

  12. Rofagha, R., Erb, U., Ostander, D., et al., Nanostruct. Mater., 1993, vol. 2, p. 1.

    Article  CAS  Google Scholar 

  13. Wang, S., Rofagha, R., Roberge, P.R., and Erb, U., Proc. Electrochem. Soc., 1995, vols. 95–98, p. 244.

    Google Scholar 

  14. El-Sherik, A.M., Erb, U., Palumbo, G., and Aust, K.T., Scr. Metall. Mater., 1992, vol. 27, p. 1185.

    Article  CAS  Google Scholar 

  15. Maletkina, T.Yu., Nalesnik, O.I., Itin, V.V., and Kolobov, Yu.R., Zashch. Met., 2003, vol. 39, p. 508.

    Google Scholar 

  16. Shneider, M., Pischang, K., Worch, H., et al., Mater. Sci. Forum, 2000, vol. 874, p. 343.

    Google Scholar 

  17. Lopez-Hirata, V.M. and Arce-Estrada, E.M., Electrochim. Acta, 1997, vol. 42, p. 61.

    Article  CAS  Google Scholar 

  18. Wang, L.P., Zhang, J.Y., Gao, Y., et al., Scr. Mater., 2006, vol. 55, p. 657.

    Article  CAS  Google Scholar 

  19. Zhidoune, M., Grosjean, M.H., Roue, L., et al., Corros. Sci., 2004, vol. 46, p. 3041.

    Article  CAS  Google Scholar 

  20. Balyanov, A., Kutnyakova, J., and Amirchanova, N.A., Scr. Mater., 2004, vol. 51, p. 225.

    Article  CAS  Google Scholar 

  21. Yu, J.K., Han, E.H., Lu, L., et al., J. Mater. Sci., 2005, vol. 40, p. 1019.

    Article  CAS  ADS  Google Scholar 

  22. Ghosh, S.K., Dey, G.K., Dusane, R.O., and Grover, A.K., J. Alloys Comp., 2006, vol. 426, p. 235.

    Article  CAS  Google Scholar 

  23. Korostyleva, T.K., Podobaev, N.I., Devyatkina, T.S., et al., Zashch. Met., 1982, vol. 18, no. 4, p. 551.

    Google Scholar 

  24. Kasparova, O.V, Plaskeev, A.V., Kolotyrkin, Ya.M., et al., Zashch. Met., 1985, vol. 21, no. 3, p. 339.

    CAS  Google Scholar 

  25. Khaldeev, G.V., Kamelin, V.V., Pevneva, A.V., and Zazhigina, T.V., Zashch. Met., 1984, vol. 20, no. 2, p. 218.

    CAS  Google Scholar 

  26. Kaesche, H., Die Korrosion der Metalle, Berlin: Springer, 1979.

    Google Scholar 

  27. Sukhotin, A.M., Fizicheskaya khimiya passiviruyushchikh plenok na zheleze (Physical Chemistry of Passivating Films on Iron), Leningrad: Khimiya, 1989.

    Google Scholar 

  28. Tsyrlina, G.A. and Petrii, O.A., in Itogi Nauki Tekhn. Ser. Elektrokhimiya, Moscow: VINITI, 1987, vol. 24, p. 154.

    Google Scholar 

  29. Tyurin, A.G., Termodinamika khimicheskoi i elektrokhimicheskoi ustoichivosti splavov. II. Nizkotemperaturnoe okislenie (Thermodynamics of Chemical and Electrochemical Stability of Alloys. II. Low-Temperature Oxidation), Chelyabinsk: Izd. Gos. Univ., 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Syugaev.

Additional information

Original Russian Text © A.V. Syugaev, S.F. Lomaeva, S.M. Reshetnikov, 2010, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2010, Vol. 46, No. 1, pp. 74–80.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syugaev, A.V., Lomaeva, S.F. & Reshetnikov, S.M. Electrochemical properties of α-Fe + Fe3C nanocrystalline composites in acidic environments. Prot Met Phys Chem Surf 46, 82–89 (2010). https://doi.org/10.1134/S2070205110010120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205110010120

Keywords

Navigation