Skip to main content
Log in

Developing Ways of Obtaining Quality Hydrolyzates Based on Integrating Catalytic Peroxide Delignification and the Acid Hydrolysis of Birch Wood

  • Biocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Traditional processes of acid-catalyzed hydrolysis of wood are ineffective due to the low quality of formed glucose solutions contaminated with impurities that inhibit fermentation of glucose to ethanol. This problem grows during the hydrolysis of birch wood containing large amounts of hemicellulose. This work proposes producing quality glucose solutions using sulfuric acid (H2SO4, 80%) catalyzed hydrolysis at 25°C the cellulosic products formed during the catalytic peroxide delignification of birch wood. It is established that the composition of cellulosic products strongly affects the contents of glucose, xylose, and impurities inhibiting the enzymatic synthesis of bioethanol: furfural, 5-hydroxymethyl furfural, and levulinic acid. High yields (80.4–83.5 wt %) of glucose are achieved using cellulosic products produced by integrating the processes of sulfuric acid hydrolysis of hemicelluloses from birch wood and peroxide delignification of prehydrolyzed wood in the presence of catalysts: 2% H2SO4 and 1% TiO2. Concentration of inhibitors of enzymatic processes in these hydrolyzates is below the allowable limits. Hydrolyzates with maximum glucose content (86.4–88.5 wt %) and minimum concentration of inhibiting impurities produced by acid hydrolysis of cellulosic products treated with an 18% solution of NaOH. Gas chromatography, HPLC, and chromato-mass spectrometry are used to analyze the composition of hydrolyzates. Cellulosic products are examined by SEM, XRD, and chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, J.R.M., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., and Gorwa-Grauslund, M.F., J. Chem. Technol. Biotechnol., 2007, vol. 82, no. 4, pp. 340–349.

    Article  CAS  Google Scholar 

  2. Lin, Y. and Tanaka, S., Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 627–642.

    Article  CAS  PubMed  Google Scholar 

  3. Taherzadeh, M.J. and Karimi, K., BioResources, 2007, vol. 2, no. 3, pp. 472–499.

    CAS  Google Scholar 

  4. Fengel, D. and Wegener, G., Wood: Chemistry, Ultrustructure, Reactions, Walter de Gruter: Berlin/New York, 1984.

    Google Scholar 

  5. Hu, G., Heitmann, J.A., and Rojas, O., BioResources, 2008, vol. 3, no. 1, pp. 270–294.

    Google Scholar 

  6. Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.A., and Tarabanko, V.E., Chem. Sustainable Dev., 2005, vol. 13, no. 4, pp. 531–539.

    CAS  Google Scholar 

  7. Brazdausks, P., Puke, M., Vedernikovs, N., and Kruma, I., Environ. Clim. Technol., 2013, vol. 11, pp. 478–485.

    Google Scholar 

  8. Li, H., Saeed, A., Jahan, M.S., Ni, J., and van Heiningen, A., J. Wood Chem. Technol., 2010, vol. 30, no. 1, pp. 48–60.

    Article  CAS  Google Scholar 

  9. Amiri, H. and Karimi, K., Ind. Eng. Chem. Res., 2013, vol. 52, no. 33, pp. 11494–11501.

    Article  CAS  Google Scholar 

  10. Barana, D., Salanti, A., Orlandi, M., Ali, D.S., and Zoia, L., Ind. Crops Prod., 2016, vol. 86, pp. 31–39.

    Article  CAS  Google Scholar 

  11. Singh, D.P. and Trivedi, R.K., Int. J. ChemTech Res., 2013, vol. 5, no. 2, pp. 727–734.

    CAS  Google Scholar 

  12. Guo, B., Zhang, Y., Yu, G., Lee, W.-H., Jin, Y.-S., and Morgenroth, E., Appl. Biochem. Biotechnol., 2013, vol. 169, no. 4, pp. 1069–1087.

    Article  CAS  PubMed  Google Scholar 

  13. Bose, S.K., Barber, V.A., Alves, E.F., Kiemle, D.J., Stipanovic, A.J., and Francis, R.C., Carbohydr. Polym., 2009, vol. 78, no. 3, pp. 396–401.

    Article  CAS  Google Scholar 

  14. Borrega, M., Nieminen, K., and Sixta, H., BioResources, 2011, vol. 6, no. 2, pp. 1890–1903.

    CAS  Google Scholar 

  15. Hamelinck, C.N., van Hooijdonk, G., and Faaij, A.P.C., Biomass Bioenergy, 2005, vol. 28, no. 4, pp. 384–410.

    Article  CAS  Google Scholar 

  16. Kuznetsov, B.N., Taraban’ko, V.E., and Kuznetsova, S.A., Kinet. Catal., 2008, vol. 49, no. 4, pp. 517–526.

    Article  CAS  Google Scholar 

  17. Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.G., Yatsenkova, O.V., and Petrov, A.V., React. Kinet., Mech. Catal., 2011, vol. 104, no. 2, pp. 337–343.

    Article  CAS  Google Scholar 

  18. Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V., Djakovitch, L., and Pinel, C., React. Kinet., Mech. Catal., 2013, vol. 110, no. 2, pp. 271–280.

    Article  CAS  Google Scholar 

  19. Yang, Z., Kang, H., Guo, Y., Zhuang, G., Bai, Z., Zhang, H., Feng, C., and Dong, Y., Ind. Crops Prod., 2013, vol. 46, pp. 205–209.

    Article  CAS  Google Scholar 

  20. Zhao, X., Zhou, Y., and Liu, D., Bioresour. Technol., 2012, vol. 105, pp. 160–168.

    Article  CAS  PubMed  Google Scholar 

  21. Bujang, N., Rodhi, M.N.M., Musa, M., Subari, F., Idris, N., Makhtar, N.S.M., and Hamid, K.H.K., Procedia Eng., 2013, vol. 68, pp. 372–378.

    Article  CAS  Google Scholar 

  22. Yatsenkova, O.V., Pen, R.Z., Chudina, A.I., Skripnikov, A.M., and Kuznetsov, B.N., Khim. Tekhnol., 2015, no. 11, pp. 686–693.

    Google Scholar 

  23. Shin, S.-J., Park, J.-M., Cho, D.-H., Kim, Y.-H., and Cho, N.-S., J. Korean Wood Sci. Technol., 2009, vol. 37, no. 6, pp. 578–584.

    Google Scholar 

  24. Iranmahboob, J., Nadim, F., and Monemi, S., Biomass Bioenergy, 2002, vol. 22, no. 5, pp. 401–404.

    Article  CAS  Google Scholar 

  25. Yoon, S.-Y., Han, S.-H., and Shin, S.-J., Energy, 2014, vol. 77, pp. 19–24.

    Article  CAS  Google Scholar 

  26. Yatsenkova, O.V., Pen, R.Z., Skripnikov, A.M., Beregovtsova, N.G., and Kuznetsov B.N., Chem. Sustainable Dev., 2016, vol. 24, no. 6, pp. 811–819.

    CAS  Google Scholar 

  27. Jeffries, T.W., Curr. Opin. Biotechnol., 2006, vol. 17, no. 3, pp. 320–326.

    Article  CAS  PubMed  Google Scholar 

  28. Wijaya, Y.P., Putra, R.D.D., Widyaya, V.T., Ha, J.-M., Suh, D.J., and Kim, C.S., Bioresour. Technol., 2014, vol. 164, pp. 221–231.

    Article  CAS  PubMed  Google Scholar 

  29. Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W., J. Agric. Food Chem., 2010, vol. 58, no. 16, pp. 9043–9053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hallac, B.B. and Ragauskas, A.J., Biofuels, Bioprod. Biorefin., 2011, vol. 5, no. 2, pp. 215–225.

    Article  CAS  Google Scholar 

  31. Ruiz-Matute, A.I., Hernández-Hernández, O., Rodríguez-Sánchez, S., Sanz, M.L., and Martínez-Castro, I., J. Chromatogr. B, 2011, vol. 879, nos. 17–18, pp. 1226–1240.

    Article  CAS  Google Scholar 

  32. Wang, H., Zhang, C., He, H., and Wang, L., J. Environ. Sci., 2012, vol. 24, no. 3, pp. 473–478.

    Article  CAS  Google Scholar 

  33. Baram, G.I., in 100 Let khromatografii (100 Years of Chromatography), Moscow: Nauka, pp. 32–45.

  34. Kharina, M.V., Emel’yanov, V.M., Ablaev, A.R., Moshkina, N.E., Ibragimova, N.N., and Gorshkova, T.A., Khim. Rastit. Syr’ya, 2014, no. 1, pp. 53–59.

    Google Scholar 

  35. Klinke, H.B., Thomsen, A.B., and Ahring, B.K., Appl. Microbiol. Biotechnol., 2004, vol. 66, no. 1, pp. 10–26.

    Article  CAS  PubMed  Google Scholar 

  36. Garyntseva, N.V., Sudakova, I.G., and Kuznetsov, B.N., Zh. Sib. Fed. Univ., Khim., 2015, vol. 8, no. 3, pp. 422–429.

    Article  Google Scholar 

  37. Hilgert, J., Meine, N., Rinaldi, R., and Schüth, F., Energy Environ. Sci., 2013, vol. 6, no. 1, pp. 92–96.

    Article  CAS  Google Scholar 

  38. Hu, H.-Y., Chen, Y.-M., and Zhang, Y.-J., J. Chem. Pharm. Res., 2013, vol. 5, no. 12, pp. 129–134.

    Google Scholar 

  39. Carrasquillo-Flores, R., Käldström, M., Schüth, F., Dumesic, J.A., and Rinaldi, R., ACS Catal., 2013, vol. 3, no. 5, pp. 993–997.

    Article  CAS  Google Scholar 

  40. Yatsenkova, O.V., Chudina, A.I., Skripnikov, A.M., Chesnokov, N.V., And Kuznetsov, B.N., Zh. Sib. Fed. Univ., Khim., 2015, vol. 8, no. 2, pp. 211–221.

    Article  Google Scholar 

  41. Kim, J.S., Lee, Y.Y., and Kim, T.H., Bioresour. Technol., 2016, vol. 199, pp. 42–48.

    Article  CAS  PubMed  Google Scholar 

  42. Knill, Ch.J. and Kennedy, J.F., Carbohydr. Polym., 2003, vol. 51, no. 3, pp. 281–300.

    Article  CAS  Google Scholar 

  43. Chen, R., Wang, Y.-Z., Liao, Q., Zhu, X., and Xu, T.-F., BMB Rep., 2013, vol. 46, no. 5, pp. 244–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mills, T.Y., Sandoval, N.R., and Gill, R.T., Biotechnol. Biofuels, 2009, vol. 2, pp. 26–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, H., Guo, X., Li, D., Liu, M., Wu, J., and Ren, H., Bioresour. Technol., 2011, vol. 102, no. 16, pp. 7486–7493.

    Article  CAS  PubMed  Google Scholar 

  46. Zha, Y., Westerhuis, J.A., Muilwijk, B., Overkamp, K.M., Nijmeijer, B.M., Coulier, L., Smilde, A.K., and Punt, P.J., BMC Biotechnol., 2014, vol. 14, pp. 22–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zha, Y., Muilwijk, B., Coulier, L., and Punt, P.J., J. Bioprocess. Biotech., 2012, vol. 2, no. 1, pp. 112–122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Kuznetsov.

Additional information

Original Russian Text © B.N. Kuznetsov, N.V. Chesnokov, O.V. Yatsenkova, I.G. Sudakova, A.M. Skripnikov, N.G. Beregovtsova, V.I. Sharypov, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, B.N., Chesnokov, N.V., Yatsenkova, O.V. et al. Developing Ways of Obtaining Quality Hydrolyzates Based on Integrating Catalytic Peroxide Delignification and the Acid Hydrolysis of Birch Wood. Catal. Ind. 10, 142–151 (2018). https://doi.org/10.1134/S2070050418020113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050418020113

Keywords

Navigation