Skip to main content
Log in

Numerical Modeling of the Static Electric Field Effect on the Director of the Nematic Liquid Crystal Director

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A two-dimensional model of the Frederiks effect is used to investigate the static electric field effect on the orientation of the nematic liquid crystal (LC) director in a side-electrode cell. The solutions are obtained by the standard finite-difference methods. The programs for the numerical solution of a two-dimensional parabolic partial differential equation are developed both in FORTRAN and C/C++. The Frederiks transition threshold for the central part of the cell and the dependences of the director’s orientation distribution on a high electric field are obtained. The results of the calculation are compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley Interscience, New York, 2007).

    Book  Google Scholar 

  2. L. M. Blinov, Electro–and Magnetooptics of Liquid Crystals (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  3. P. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).

    MATH  Google Scholar 

  4. S. Chandrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, 1977).

    Google Scholar 

  5. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).

    MATH  Google Scholar 

  6. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1959).

    MATH  Google Scholar 

  7. J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE J. Display Technol. 1, 51–61 (2005).

    Article  Google Scholar 

  8. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–23 (1962).

    Article  Google Scholar 

  9. F. Lonberg, S. Fraden, A. J. Hurd, and R. E. Meyer, “Field–induced transient periodic structures in nematic liquid crystals: the twist–Freedericksz transition,” Phys. Rev. Lett. 52, 1903–1907 (1984).

    Article  Google Scholar 

  10. G. Srajer, S. Fraden, and R. B. Meyer, “Field–induced nonequilibrium periodic structures in nematic liquid crystals: nonlinear study of the twist Frederiks transition,” Phys. Rev. A 39, 4828–4835 (1989).

    Article  Google Scholar 

  11. A. A. Egorov, I. A. Maslianitsyn, V. D. Shigorin, A. S. Airiian, and E. A. Airian, “Investigation of the effect of a pulsed–periodic electric field and linear polarization of laser radiation on the properties of an NLC waveguide,” in Proceedings of the International Conference on Problems of Mathematical and Theoretical Physics and Mathematical Modeling, Moscow, Apr. 5–7, 2016 (MIFI, Moscow, 2016), pp. 51–53.

    Google Scholar 

  12. Y. G. Marinov, G. B. Hadjichristov, A. G. Petrov, S. Sridevi, U. S. Hiremath, C. V. Yelamaggad, and S. K. Prasad, “Conoscopic evidence of the UV light–induced flexoelectric effect in homeotropic layers of nematic liquid crystal doped with azobenzene derivatives,” J. Phys.: Conf. Ser. 253, 012060 (2010).

    Google Scholar 

  13. A. S. Ayriyan, E. A. Ayrjan, A. A. Egorov, G. B. Hadjichristov, Y. G. Marinov, I. A. Maslyanitsyn, A. G. Petrov, J. Pribis, L. Popova, V. D. Shigorin, A. Strigazzi, and S. I. Torgova, “Some features of second harmonic generation in the nematic liquid crystal 5CB in the pulsed–periodic electric field,” Phys. Wave Phenom. 24, 259–267 (2016). doi 10.3103/S1541308X16040026

    Article  Google Scholar 

  14. S. Faetti, M. Gatti, and V. Palleschi, “Measurements of surface elastic torques in liquid crystals: a method to measure elastic constants and anchoring energies,” Rev. Phys. Appl. 21, 451–461 (1986). doi 10.1051/rphysap: 01986002107045100

    Article  Google Scholar 

  15. A. Bogi and S. Faetti, “Elastic, dielectric and optical constants of 4'–pentyl–4–cyanobiphenyl,” Liq. Cryst. 28, 729–739 (2001). doi 10.1080/02678290010021589

    Article  Google Scholar 

  16. A. A. Samarskii, The Theory of Difference Schemes (Marcel Dekker, New York, 2001).

    Book  MATH  Google Scholar 

  17. E. A. Ayrjan, E. P. Zhidkov, and B. N. Khoromsky, “Fast relaxation method for solving the difference problem for the poisson equation on a sequence of grids,” Comput. Phys. Commun. 29, 125–130 (1983). doi 10.1016/0010–4655(83)90068–1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ayriyan.

Additional information

Original Russian Text © A.S. Ayriyan, E.A. Ayrjan, A.A. Egorov, I.A. Maslyanitsyn, V.D. Shigorin, 2018, published in Matematicheskoe Modelirovanie, 2018, Vol. 30, No. 4, pp. 97–107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayriyan, A.S., Ayrjan, E.A., Egorov, A.A. et al. Numerical Modeling of the Static Electric Field Effect on the Director of the Nematic Liquid Crystal Director. Math Models Comput Simul 10, 714–720 (2018). https://doi.org/10.1134/S2070048218060029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048218060029

Keywords

Navigation