Skip to main content
Log in

Enzymatic Biotesting: Scientific Basis and Application

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The paper provides a review of the current state of research in the field of biotesting, and the problems of environmental studies and ways to solve them are discussed. The basic principles and examples of using enzymes for detecting toxicants in various environmental samples are considered. Based on an analysis of numerous published data, the advantages and limitations, as well as the prospects for using enzymes for performing biotesting tasks, are assessed. A separate section of the review is devoted to bioluminescent enzymatic bioassays developed by the authors and successfully used for environmental monitoring of water, soil, and air. The necessity of developing a battery of enzymatic bioassays is substantiated. It allows one to have the most complete and accurate information about the degree of pollution of environmental objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Alonso-Lomillo, M.A., Domínguez-Renedo, O., del Torno-deRomán, L., and Arcos-Martínez, M.J., Horseradish peroxidase-screen printed biosensors for determination of Ochratoxin A, Anal. Chim. Acta, 2011, vol. 688, no. 1, pp. 49–53.

    Article  CAS  PubMed  Google Scholar 

  2. Amine, A., Arduini, F., Moscone, D., and Palleschi, G., Recent advances in biosensors based on enzyme inhibition, Biosens. Bioelectron., 2016, vol. 76, pp. 180–194.

    Article  CAS  PubMed  Google Scholar 

  3. Andreescu, S., Avramescu, A., Bala, C., Magearu, V., and Marty, J.-L., Detection of organophosphorus insecticides with immobilized acetylcholinesterase—comparative study of two enzyme sensors, Anal. Bioanal. Chem., 2002a, vol. 374, no. 1, pp. 39–45.

    Article  CAS  PubMed  Google Scholar 

  4. Andreescu, S., Noguer, T., Magearu, V., and Marty, J.-L., Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents, Talanta, 2002b, vol. 57, no. 1, pp. 169–176.

    Article  CAS  PubMed  Google Scholar 

  5. Arduini, F. and Amine, A., Biosensors based on enzyme inhibition, Adv. Biochem. Eng. Biotechnol., 2014, vol. 140, pp. 299–326.

    CAS  PubMed  Google Scholar 

  6. Ashrafi, A.M., Sys, M., Sedláčková, E., Farag, A.S., Adam, V., Přibyl, J., and Richtera, L., Application of the enzymatic electrochemical biosensors for monitoring non-competitive inhibition of enzyme activity by heavy metals, Sensors (Basel), 2019, vol. 19, no. 13, artic. no. 2939.

  7. Aubert, S.D., Li, Y., and Raushel, F.M., Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase, Biochemistry, 2004, vol. 43, no. 19, pp. 5707–5715.

    Article  CAS  PubMed  Google Scholar 

  8. Bachan Upadhyay, L.S. and Verma, N., Enzyme inhibition based biosensors: A review, Anal. Lett., 2013, vol. 46, no. 2, pp. 225–241.

    Article  CAS  Google Scholar 

  9. Bacmaga, M., Kucharski, J., and Wyszkowska, J., Microbial and enzymatic activity of soil contaminated with azoxystrobin, Environ. Monit. Assess., 2015, vol. 187, artic. no. 615.

  10. Bao, J., Hou, C., Chen, M., Li, J., Huo, D., Yang, M., Luo, X., and Lei, Y., Plant esterase-chitosan/gold nanoparticles–graphene nanosheet composite-based biosensor for the ultrasensitive detection of organophosphate pesticides, J. Agric. Food Chem., 2015, vol. 63, no. 47, pp. 10319–10326.

    Article  CAS  PubMed  Google Scholar 

  11. Bartkowiak, A., Lemanowicz, J., and Breza-Boruta, B., Evaluation of the content of Zn, Cu, Ni and Pb as well as the enzymatic activity of forest soils exposed to the effect of road traffic pollution, Environ. Sci. Pollut. Res., 2017, vol. 24, pp. 23893–23902.

    Article  CAS  Google Scholar 

  12. Blaise, C. and Ferard, J.-F., Small-Scale Freshwater Toxicity Investigations, Dordrecht: Springer, 2005.

  13. Bosch-Orea, C., Farré, M., and Barceló, D., Biosensors and bioassays for environmental monitoring, Compr. Anal. Chem., 2017, vol. 77, pp. 337–383.

    Article  Google Scholar 

  14. Bucur, B., Munteanu, F.-D., Marty, J.-L., and Vasilescu, A., Advances in enzyme-based biosensors for pesticide detection, Biosensors (Basel), 2018, vol. 8, no. 2, artic. no. 27.

  15. Campaña, A.L., Florez, S.L., Noguera, M.J., Fuentes, O.P., Puentes, P.R., Cruz, J.C., and Osma, J.F., Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater, Biosensors (Basel), 2019, vol. 9, no. 1, artic. no. 41.

  16. Capoferri, D., Della Pelle, F., Del Carlo, M., and Compagnone, D., Affinity sensing strategies for the detection of pesticides in food, Foods, 2018, vol. 7, no. 9, artic. no. 148.

  17. Carr, R.L., Chambers, H.W., Chambers, J.E., Oppenheimer, S.F., and Richardson, J.R., Modelling the interaction of mixtures of organophosphorus insecticides with cholinesterase, Electron. J. Diff. Eq., Conf., 2003, vol. 10, pp. 89–99.

    Google Scholar 

  18. Caruso, G., De Pasquale, F., Mita, D.G., and Micale, V., Digestive enzymatic patterns as possible biomarkers of endocrine disruption in the red mullet (Mullus barbatus): A preliminary investigation, Mar. Pollut. Bull., 2016, vol. 105, no. 1, pp. 37–42.

    Article  CAS  PubMed  Google Scholar 

  19. Chauhan, N. and Pundir, C.S., An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides, Anal. Chim. Acta, 2011, vol. 701, no. 1, pp. 66–74.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, H., Mousty, C., Chen, L., and Cosnier, S., A new approach for nitrite determination based on a HRP/catalase biosensor, Mater. Sci. Eng. C, 2008, vol. 28, nos. 5–6, pp. 726–730.

    Article  CAS  Google Scholar 

  21. Chrouda, A., Zinoubi, K., Soltane, R., Alzahrani, N., Osman, G., Al-Ghamdi, Y.O., Qari, S., Al Mahri, A., Algethami, F.K., Majdoub, H., and Jaffrezic Renault, N., An acetylcholinesterase inhibition-based biosensor for aflatoxin B1 detection using sodium alginate as an immobilization matrix, Toxins (Basel), 2020, vol. 12, no. 3, artic. no. 173.

  22. Cosnier, S., Mousty, C., Cui, X., Yang, X., and Dong, S., Specific determination of As(V) by an acid phosphatase–polyphenol oxidase biosensor, Anal. Chem., 2006, vol. 78, no. 14, pp. 4985–4989.

    Article  CAS  PubMed  Google Scholar 

  23. Crane, M. and Maltby, L., The lethal and sublethal responses of Gammarus pulex to stress: Sensitivity and sources of variation in an in situ bioassay, Environ. Toxicol. Chem., 1991, vol. 10, no. 10, pp. 1331–1339.

    CAS  Google Scholar 

  24. Dang, Z., van der Ven, L.T.M., and Kienhuis, A.S., Fish embryo toxicity test, threshold approach, and moribund as approaches to implement 3R principles to the acute fish toxicity test, Chemosphere, 2017, vol. 186, pp. 677–685.

    Article  CAS  PubMed  Google Scholar 

  25. Denisov, I., Lukyanenko, K., Yakimov, A., Kukhtevich, I., Esimbekova, E., and Belobrov, P., Disposable luciferase-based microfluidic chip for rapid assay of water pollution, Luminescence, 2018, vol. 33, no. 6, pp. 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  26. Dock, E., Christensen, J., Olsson, M., Tonning, E., Ruzgas, T., and Emneus, J., Multivariate data analysis of dynamic amperometric biosensor responses from binary analyte mixtures – application of sensitivity correction algorithms, Talanta, 2005, vol. 65, no. 2, pp. 298–305.

    Article  CAS  PubMed  Google Scholar 

  27. Dopp, E., Pannekens, H., Itzel, F., and Tuerk, J., Effect-based methods in combination with state-of-the-art chemical analysis for assessment of water quality as integrated approach, Int. J. Hyg. Environ. Health, 2019, vol. 222, no. 4, pp. 607–614.

    Article  CAS  PubMed  Google Scholar 

  28. Dubovskaya, O.P., Gladyshev, M.I., Esimbekova, E.N., Morozova, I.I., Gol’d, Z.G., and Makhutova, O.N., Study of possible relation between seasonal dynamics of zooplankton nonconsumptive mortality and water toxicity in a pond, Biol. Vnutr. Vod., 2002, no. 3, pp. 39–43.

  29. Edori, O.S., Festus, C., and Edori, E.S., Comparative effects of petrol and diesel on enzyme activity in Tympanotonus fuscatus after sublethal exposure, Pak. J. Biol. Sci., 2014, vol. 17, no. 4, pp. 545–549.

    Article  CAS  PubMed  Google Scholar 

  30. Edwards, C., Duanghathaipornsuk, S., Goltz, M., Kanel, S., and Kim, D.-S., Peptide nanotube encapsulated enzyme biosensor for vapor phase detection of malathion, an organophosphorus compound, Sensors (Basel), 2019, vol. 19, no. 18, artic. no. 3856.

  31. Ekelund, N.G.A. and Häder, D.-P., Environmental monitoring using bioassays, in Bioassays: Advanced Methods and Applications, Hader, D. and Erzinger, G., Eds., Amsterdam: Elsevier, 2018, pp. 419–437.

    Google Scholar 

  32. Elsebai, B., Ghica, M.E., Abbas, M.N., and Brett, C.M.A., Catalase based hydrogen peroxide biosensor for mercury determination by inhibition measurements, J. Hazard. Mater., 2017, vol. 340, pp. 344–350.

    Article  CAS  PubMed  Google Scholar 

  33. Esimbekova, E.N., Kondik, A.M., and Kratasyuk, V.A., Bioluminescent enzymatic rapid assay of water integral toxicity, Environ. Monit. Assess., 2013, vol. 185, no. 7, pp. 5909–5916.

    Article  CAS  PubMed  Google Scholar 

  34. Esimbekova, E., Kratasyuk, V., and Shimomura, O., Application of enzyme bioluminescence in ecology, in Bioluminescence: Fundamentals and Applications in Biotechnology, Thouand, G. and Marks, R., Eds., Berlin: Springer, 2014, pp. 67–109.

    Google Scholar 

  35. Esimbekova, E.N., Lonshakova-Mukina, V.I., Bezrukikh, A.E., and Kratasyuk, V.A., Design of multicomponent reagents for enzymatic assays, Dokl. Biochem. Biophys., 2015, vol. 461, pp. 102–105.

    Article  CAS  PubMed  Google Scholar 

  36. Esimbekova, E.N., Nemtseva, E.V., Bezrukikh, A.E., Jukova, G.V., Lisitsa, A.E., Lonshakova-Mukina, V.I., Rimatskaya, N.V., Sutormin, O.S., and Kratasyuk, V.A., Bioluminescent enzyme inhibition-based assay to predict the potential toxicity of carbon nanomaterials, Toxicol. In Vitro, 2017a, vol. 45, part 1, pp. 128–133.

    Article  CAS  PubMed  Google Scholar 

  37. Esimbekova, E.N., Asanova, A.A., Deeva, A.A., and Kratasyuk, V.A., Inhibition effect of food preservatives on endoproteinases, Food Chem., 2017b, vol. 235, pp. 294–297.

    Article  CAS  PubMed  Google Scholar 

  38. Esimbekova, E.N., Nemtseva, E.V., Kirillova, M.A., Asanova, A.A., and Kratasyuk, V.A., Bioluminescent assay for toxicological assessment of nanomaterials, Dokl. Biochem. Biophys., 2017c, vol. 472, pp. 60–63.

    Article  CAS  PubMed  Google Scholar 

  39. Esimbekova, E.N., Kratasyuk, V.A., Nemtseva, E.V., Kudryasheva, N.S., Medvedeva, S.E., and Kirillova, M.A., Biolyuminestsentnye biotesty: Sovremennoe sostoyanie i perspektivy (Bioluminescent Bioassays: Current State and Prospects), Kratasyuk, V.A., Ed., Krasnoyarsk: Sib. Fed. Univ., 2018.

    Google Scholar 

  40. Everett, W.R. and Rechnitz, G.A., Mediated bioelectrocatalytic determination of organophosphorus pesticides with a tyrosinase-based oxygen biosensor, Anal. Chem., 1998, vol. 70, no. 4, pp. 807–810.

    Article  CAS  Google Scholar 

  41. Evtugyn, G.A., Budnikov, H.C., and Nikolskaya, E.B., Sensitivity and selectivity of electrochemical enzyme sensors for inhibitor determination, Talanta, 1998, vol. 46, no. 4, pp. 465–484.

    Article  CAS  PubMed  Google Scholar 

  42. Fennouh, S., Casimiri, V., and Burstein, C., Increased paraoxon detection with solvents using acetylcholinesterase inactivation measured with a choline oxidase biosensor, Biosens. Bioelectron., 1997, vol. 12, no. 2, pp. 97–104.

    Article  CAS  Google Scholar 

  43. Feron, V.J. and Groten, J.P., Toxicological evaluation of chemical mixtures, Food Chem. Toxicol., 2002, vol. 40, no. 6, pp. 825–839.

    Article  CAS  PubMed  Google Scholar 

  44. Greer, J.B., Magnuson, J.T., Hester, K., Giroux, M., Pope, C., Anderson, T., Liu, J., Dang, V., Denslow, N.D., and Schlenk, D., Effects of chlorpyrifos on cholinesterase and serine lipase activities and lipid metabolism in brains of rainbow trout (Oncorhynchus mykiss), Toxicol. Sci., 2019, vol. 172, no. 1, pp. 146–154.

    Article  CAS  PubMed Central  Google Scholar 

  45. Gul, I., Sheeraz Ahmad, M., Saqlan Naqvi, S.M., Hussain, A., Wali, R., Ahmad Farooqi, A., and Ahmed, I., Polyphenol oxidase (PPO) based biosensors for detection of phenolic compounds: A review, J. Appl. Biol. Biotechnol., 2017, vol. 5, no. 3, pp. 72–85.

    Article  CAS  Google Scholar 

  46. Hani, Y.M.I., Turies, C., Palluel, O., Delahaut, L., Gaillet, V., Bado-nilles, A., Porcher, J.-M., Geffard, A., and Dedourge-geffard, O., Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus): Interest of digestive enzymes as biomarkers, Aquat. Toxicol., 2018, vol. 199, pp. 252–262.

    Article  CAS  PubMed  Google Scholar 

  47. Hossain, S.M.Z. and Brennan, J.D., β-galactosidase-based colorimetric paper sensor for determination of heavy metals, Anal. Chem., 2011, vol. 83, no. 22, pp. 8772–8778.

    Article  CAS  PubMed  Google Scholar 

  48. Hussain, Ch.M. and Keçili, R., Environmental pollution and environmental analysis, in Modern Environmental Analysis Techniques for Pollutants, Amsterdam: Elsevier, 2020a, pp. 1–36.

    Google Scholar 

  49. Hussain, Ch.M. and Keçili, R., Future of environmental analysis, in Modern Environmental Analysis Techniques for Pollutants, Amsterdam: Elsevier, 2020b, pp. 381–398.

    Google Scholar 

  50. Istomina, A., Chelomin, V., Kukla, S., Zvyagintsev, A., Karpenko, A., Slinko, E., Dovzhenko, N., Slobodskova, V., and Kolosova, L., Copper effect on the biomarker state of the Mizuhopecten yessoensis tissues in the prespawning period, Environ. Toxicol. Pharmacol., 2019, vol. 70, artic. no. 103189.

  51. Jain, M., Yadav, P., Joshi, A., and Kodgire, P., Advances in detection of hazardous organophosphorus compounds using organophosphorus hydrolase based biosensors, Crit. Rev. Toxicol., 2019, vol. 49, no. 5, pp. 387–410.

    Article  CAS  PubMed  Google Scholar 

  52. Jaworska, H. and Lemanowicz, J., Heavy metal contents and enzymatic activity in soils exposed to the impact of road traffic, Sci. Rep., 2019, vol. 9, artic. no. 19981.

  53. Jemec, A., Drobne, D., Tisler, T., and Sepcić, K., Biochemical biomarkers in environmental studies – lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species, Environ. Sci. Pollut. Res. Int, 2010, vol. 17, no. 3, pp. 571–581.

    Article  CAS  PubMed  Google Scholar 

  54. Jia, L., Zhou, Y., Wu, K., Feng, Q., Wang, C., and He, P., Acetylcholinesterase modified AuNPs-MoS2-rGO/PI flexible film biosensor: Towards efficient fabrication and application in paraoxon detection, Bioelectrochemistry, 2020, artic. no. 107392.

  55. Kalyabina, V.P., Esimbekova, E.N., Torgashina, I.G., Kopylova, K.V., and Kratasyuk, V.A., Principles for construction of bioluminescent enzyme biotests for analysis of complex media, Dokl. Biochem. Biophys., 2019, vol. 485, pp. 107–110.

    Article  CAS  PubMed  Google Scholar 

  56. Karousos, N.G., Aouabdi, S., Way, A.S., and Reddy, S.M., Quartz crystal microbalance determination of organophosphorus and carbamate pesticides, Anal. Chim. Acta, 2002, vol. 469, no. 2, pp. 189–196.

    Article  CAS  Google Scholar 

  57. Khare, A., Chhawani, N., and Kumari, K., Glutathione reductase and catalase as potential biomarkers for synergistic intoxication of pesticides in fish, Biomarkers, 2019, vol. 24, no. 7, pp. 666–676.

    Article  CAS  PubMed  Google Scholar 

  58. Kolosova, E.M., Sutormin, O.S., Esimbekova, E.N., Lonshakova-Mukina, V.I., and Kratasyuk, V.A., Set of enzymatic bioassays for assessment of soil contamination, Dokl. Biol. Sci., 2019, vol. 489, pp. 165–168.

    Article  CAS  PubMed  Google Scholar 

  59. Krasovskii, G.N., Alekseeva, T.V., Egorova, N.A., and Zholdakova, Z.I., Biotesting in hygienic assessment of water quality, Gig. Sanit., 1991, no. 9, pp. 13–16.

  60. Kratasyuk, V.A., Principle of luciferase biotesting, Proceeding of the First Int. School “Biological luminescence,” Singapore: World Sci. Publ. Co., 1990, pp. 550–558.

  61. Kratasyuk, V. and Esimbekova, E., Applications of luminous bacteria enzymes in toxicology, Comb. Chem. High Throughput Screening, 2015, vol. 18, no. 10, pp. 952–959.

    Article  CAS  Google Scholar 

  62. Kratasyuk, V.A., Kuznetsov, A.M., Rodicheva, E.K., Egorova, O.I., Abakumova, V.V., Gribovskaya, I.V., and Kalacheva, G.S., Problems and prospects of bioluminescence assays in ecological monitoring, Sib. J. Ecol., 1996, vol. 5, pp. 397–403.

    Google Scholar 

  63. Kratasyuk, V.A., Vetrova, E.V., and Kudryasheva, N.S., Bioluminescent water quality monitoring of salt lake Shira, Luminescence, 1999, vol. 14, no. 4, pp. 193–195.

    Article  CAS  PubMed  Google Scholar 

  64. Kratasyuk, V.A., Esimbekova, E.N., Gladyshev, M.I., Khromichek, E.B., Kuznetsov, A.M., and Ivanova, E.A., The use of bioluminescent biotests for study of natural and laboratory aquatic ecosystems, Chemosphere, 2001, vol. 42, no. 8, pp. 909–915.

    Article  CAS  PubMed  Google Scholar 

  65. Kudryasheva, N.S. and Kovel, E.S., Monitoring of low-intensity exposures via luminescent bioassays of different complexity: Cells, enzyme reactions and fluorescent proteins, Int. J. Mol. Sci., 2019, vol. 20, no. 18, artic. no. 4451.

  66. Kudryasheva, N.S. and Tarasova, A.S., Pollutant toxicity and detoxification by humic substances: Mechanisms and quantitative assessment via luminescent biomonitoring, Environ. Sci. Pollut. Res. Int., 2015, vol. 22, no. 1, pp. 155–167.

    Article  CAS  PubMed  Google Scholar 

  67. Kudryasheva, N.S., Kudinova, I.Y., Esimbekova, E.N., Kratasyuk, V.A., and Stom, D.I., The influence of quinones and phenols on the triple NAD(H)-dependent enzyme systems, Chemosphere, 1999, vol. 38, no. 1, pp. 751–758.

    Article  CAS  PubMed  Google Scholar 

  68. Law, K.A. and Higson, S.P.J., Sonochemically fabricated acetylcholinesterase micro-electrode arrays within a flow injection analyser for the determination of organophosphate pesticides, Biosens. Bioelectron., 2005, vol. 20, no. 10, pp. 1914–1924.

    Article  CAS  PubMed  Google Scholar 

  69. Li, Z.H., Zlabek, V., Grabic, R.LiP., Machova, J., Velisek, J., and Randak, T., Effects of exposure to sublethal propiconazole on intestine-related biochemical responses in rainbow trout, Oncorhynchus mykiss, Chem. Biol. Interact., 2010, vol. 185, no. 3, pp. 241–246.

    Article  CAS  PubMed  Google Scholar 

  70. Li, Z.H., Li, P., and Shi, Z.-C., Molecular responses in digestive tract of juvenile common carp after chronic exposure to sublethal tributyltin, Ecotoxicol. Environ. Saf., 2014, vol. 109, pp. 10–14.

    Article  CAS  PubMed  Google Scholar 

  71. Lillicrap, A., Belanger, S., Burden, N., Du Pasquier, D., Embry, M. R., Halder, M., Lampi, M. A., Lee, L., Norberg-King, T., Rattner, B. A., Schirmer, K., and Thomas, P., Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of developments over the last 2 decades and current status, Environ. Toxicol. Chem., 2016, vol. 35, no. 11, pp. 2637–2646.

    Article  CAS  PubMed  Google Scholar 

  72. Lima, L.B.D., de Morais, P.B., de Andrade, R.L.T., Mattos, L.V., and Moron, S.E., Use of biomarkers to evaluate the ecological risk of xenobiotics associated with agriculture, Environ. Pollut., 2018, vol. 237, pp. 611–624.

    Article  PubMed  CAS  Google Scholar 

  73. Lonshakova-Mukina, V., Esimbekova, E., and Kratasyuk, V., Impact of enzyme stabilizers on the characteristics of biomodules for bioluminescent biosensors, Sens. Actuators, B, 2015, vol. 213, pp. 244–247.

    Article  CAS  Google Scholar 

  74. Lopes, R.M., Filho, M.V.S., de Salles, J.B., Bastos, V.L.F.C., and Bastos, J.C., Cholinesterase activity of muscle tissue from freshwater fishes: Characterization and sensitivity analysis to the organophosphate methyl-paraoxon, Environ. Toxicol. Chem., 2014, vol. 33, no. 6, pp. 1331–1336.

    Article  CAS  PubMed  Google Scholar 

  75. Lukyanenko, K.A., Denisov, I.A., Yakimov, A.S., Esimbekova, E.N., Belousov, K.I., Bukatin, A.S., Kukhtevich, I.V., Sorokin, V.V., Evstrapov, A.A., and Belobrov, P.I., Analytical enzymatic reactions in microfluidic chips, Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 775–780.

    Article  CAS  Google Scholar 

  76. Lukyanenko, K.A., Denisov, I.A., Sorokin, V.V., Yakimov, A.S., Esimbekova, E.N., and Belobrov, P.I., Handheld enzymatic luminescent biosensor for rapid detection of heavy metals in water samples, Chemosensors, 2019, vol. 7, no. 1, artic. no. 16.

  77. Luque de Castro, M.D. and Herrera, M.C., Enzyme inhibition-based biosensors and biosensing systems: Questionable analytical devices, Biosens. Bioelectron., 2003, vol. 18, nos. 2–3, pp. 279–294.

    Article  CAS  PubMed  Google Scholar 

  78. Lyubenova, M. and Boteva, S., Biotests in ecotoxicology: Current practice and problems, in Toxicology: New Aspects to This Scientific Conundrum, Larramendy, M.L. and Soloneski, S., Eds., Rijeka, Croatia: Intech, 2016, pp. 147–177.

    Google Scholar 

  79. Marinov, I., Ivanov, Y., Vassileva, N., and Godjevargova, T., Amperometric inhibition-based detection of organophosphorus pesticides in unary and binary mixtures employing flow-injection analysis, Sens. Actuators, B, 2011, vol. 160, no. 1, pp. 1098–1105.

    Article  CAS  Google Scholar 

  80. Marques, S.M. and Esteves da Silva, J.C.G., Quantitative analysis of organophosphorus pesticides in freshwater using an optimized firefly luciferase-based coupled bioluminescent assay, Luminescence, 2014, vol. 29, no. 4, pp. 378–385.

    Article  CAS  PubMed  Google Scholar 

  81. Mazzei, F., Botre, F., and Botre, C., Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides, Anal. Chim. Acta, 1996, vol. 336, nos. 1–3, pp. 67–75.

    Article  CAS  Google Scholar 

  82. McDaniel, C., US Patent Appl. 20040109853, 2004.

  83. Muenchen, D.K., Martinazzo, J., Brezolin, A.N., de Cezaro, A.M., Rigo, A.A., Mezarroba, M.N., Manzoli, A., de Lima Leite, F., Steffens, J., and Steffens, C., Cantilever functionalization using peroxidase extract of low cost for glyphosate detection, Appl. Biochem. Biotechnol., 2018, vol. 186, no. 4, pp. 1061–1073.

    Article  CAS  PubMed  Google Scholar 

  84. Mwila, K., Burton, M.H., Van Dyk, J.S., and Pletschke, B.I., The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures, Environ. Monit. Assess., 2013, vol. 185, no. 3, pp. 2315–2327.

    Article  CAS  PubMed  Google Scholar 

  85. Narra, M.R., Begum, G., Rajender, K., and Rao, J.V., In vivo impact of monocrotophos on biochemical parameters of a freshwater fish during subacute toxicity and following cessation of exposure to the insecticide, Z. Naturforsch. C. J. Biosci., 2011, vol. 66, nos. 9–10, pp. 507–514.

    Article  CAS  PubMed  Google Scholar 

  86. Ni, Y., Huang, C., and Kokot, S., Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides, Chemom. Intell. Lab. Syst., 2004, vol. 71, no. 2, pp. 177–193.

    Article  CAS  Google Scholar 

  87. Ni, Y., Cao, D., and Kokot, S., Simultaneous enzymatic kinetic determination of pesticides, carbaryl and phoxim, with the aid of chemometrics, Anal. Chim. Acta, 2007, vol. 588, no. 1, pp. 131–139.

    Article  CAS  PubMed  Google Scholar 

  88. Pachapur, P.K., Martinez, A.D.L., Pulicharla, R., Pachapur, V.L., Brar, S.K., and Galvez-Cloutier, R., Advances in protein/enzyme-based biosensors for the detection of pesticide contaminants in the environment, in Tools, Techniques and Protocols for Monitoring Environmental Contaminants, Brar, S.K., Hegde, K., and Pachapur, V.L., Eds., Amsterdam: Elsevier, 2019, pp. 231–243.

    Google Scholar 

  89. Pandard, P., Devillers, J., Charissou, A.-M., Poulsen, V., Jourdain, M.-J., Férard, J.-F., Grand, C., and Bispo, A., Selecting a battery of bioassays for ecotoxicological characterization of wastes, Sci. Total Environ., 2006, vol. 363, nos. 1–3, pp. 114–125.

    Article  CAS  PubMed  Google Scholar 

  90. Pandey, L.K., Lavoie, I., Morin, S., Depuydt, S., Lyu, J., Lee, H., Jung, J., Yeom, D.-H., Han, T., and Park, J., Towards a multi-bioassay-based index for toxicity assessment of fluvial waters, Environ. Monit. Assess., 2019, vol. 191, artic. no. 112.

  91. Parmar, T.K., Rawtani, D., and Agrawal, Y.K., Bioindicators: The natural indicator of environmental pollution, Front. Life Sci., 2016, vol. 9, no. 2, pp. 110–118.

    Article  CAS  Google Scholar 

  92. Pohanka, M., Biosensors and bioassays based on lipases, principles and applications, a review, Molecules, 2019, vol. 24, artic. no. 616.

  93. Pundir, C.S., Malik, A., and Pretty, Bio-sensing of organophosphorus pesticides: A review, Biosens. Bioelectron., 2019, vol. 140, artic. no. 111348.

  94. Rimatskaya, N.V., Nemtseva, E.V., and Kratasyuk, V.A., Bioluminescent assays for monitoring air pollution, Luminescence, 2012, vol. 27, no. 2, p. 154.

    Google Scholar 

  95. Sachkova, A.S., Kovel, E.S., Churilov, G.N., Stom, D.I., and Kudryasheva, N.S., Biological activity of carbonic nano-structures – comparison via enzymatic bioassay, J. Soils Sedim., 2019, vol. 19, no. 6, pp. 2689–2696.

    Article  CAS  Google Scholar 

  96. Schiffelers, M.-J.W.A., Blaauboer, B.J., Bakker, W.E., Beken, S., Hendriksen, C.F.M., Koëter, H.B.W.M., and Krul, C., Regulatory acceptance and use of 3R models for pharmaceuticals and chemicals: Expert opinions on the state of affairs and the way forward, Regul. Toxicol. Pharmacol., 2014, vol. 69, no. 1, pp. 41–48.

    Article  CAS  PubMed  Google Scholar 

  97. Seitkalieva, A.V., Menzorova, N.I., and Rasskazov, V.A., Application of different enzyme assays and biomarkers for pollution monitoring of the marine environment, Environ. Monit. Assess., 2016, vol. 188, artic. no. 70.

  98. Selivanova, M.A., Mogilnaya, O.A., Badun, G.A., Vydryakova, G.A., Kuznetsov, A.M., and Kudryasheva, N.S., Effect of tritium on luminous marine bacteria and enzyme reactions, J. Environ. Radioact., 2013, vol. 120, pp. 19–25.

    Article  CAS  PubMed  Google Scholar 

  99. Shanks, N., Greek, R., and Greek, J., Are animal models predictive for humans?, Philos. Ethics Humanit. Med., 2009, vol. 4, artic. no. 2.

  100. Shishatskaya, E.I., Esimbekova, E.N., Volova, T.G., Kalacheva, G.S., and Kratasyuk, V.A., Hygienic assessment of polyhydroxyalkanoates—natural polyethers of new generation, Gig. Sanit., 2002, no. 4, pp. 59–63.

  101. Shtenberg, G., Massad-Ivanir, N., and Segal, E., Detection of trace heavy metal ions in water by nanostructured porous Si biosensors, Analyst, 2015, vol. 140, no. 13, pp. 4507–4514.

    Article  CAS  PubMed  Google Scholar 

  102. Simonian, A.L., Flounders, A.W., and Wild, J.R., Fet-based biosensors for the direct detection of organophosphate neurotoxins, Electroanalysis, 2004, vol. 16, no. 22, pp. 1896–1906.

    Article  CAS  Google Scholar 

  103. Sogorb, M.A., Estévez, J., and Vilanova, E., Biomarkers in biomonitoring of xenobiotics, in Biomarkers in Toxicology, Gupta, R.C., Ed., San Diego: Elsevier Acad. Press, 2014, pp. 965–973.

    Google Scholar 

  104. Soldatkin, O.O., Kucherenko, I.S., Pyeshkova, V.M., Kukla, A.L., Jaffrezic-Renault, N., El’skaya, A.V., Dzyadevych, S.V., and Soldatkin, A.P., Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions, Bioelectrochemistry, 2012, vol. 83, pp. 25–30.

    Article  CAS  PubMed  Google Scholar 

  105. Solná, R., Dock, E., Christenson, A., Winther-Nielsen, M., Carlsson, C., Emnéus, J., Ruzgas, T., and Skladal, P., Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases, Anal. Chim. Acta, 2005, vol. 528, no. 1, pp. 9–19.

    Article  CAS  Google Scholar 

  106. Songa, E.A. and Okonkwo, J.O., Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review, Talanta, 2016, vol. 155, pp. 289–304.

    Article  CAS  PubMed  Google Scholar 

  107. Stasyuk, N., Gayda, G., Zakalskiy, A., Zakalska, O., Errachid, A., and Gonchar, M., Highly selective apo-arginase based method for sensitive enzymatic assay of manganese (II) and cobalt (II) ions, Spectrochim. Acta, Part A, 2018, vol. 193, pp. 349–356.

    Article  CAS  Google Scholar 

  108. Sutormin, O.S., Kolosova, E.M., Nemtseva, E.V., Iskorneva, O.V., Lisitsa, A.E., Matvienko, V.S., Esimbekova, E.N., and Kratasyuk, V.A., Enzymatic bioassay of soil: Sensitivity comparison of mono-, double-, and triple-enzyme systems to soil toxicants, Tsitologiya, 2018, vol. 60, no. 10, pp. 826–829.

    Article  Google Scholar 

  109. Syshchyk, O., Skryshevsky, V.A., Soldatkin, O.O., and Soldatkin, A.P., Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals, Biosens. Bioelectron., 2015, vol. 66, pp. 89–94.

    Article  CAS  PubMed  Google Scholar 

  110. Tekaya, N., Saiapina, O., Ouada, H.B., Lagarde, F., Namour, P., Ouada, H., and Jaffrezic-Renault, N., Bi-enzymatic conductometric biosensor for detection of heavy metal ions and pesticides in water samples based on enzymatic inhibition in Arthrospira platensis, J. Environ. Prot., 2014, vol. 5, pp. 441–453.

    Article  CAS  Google Scholar 

  111. Terekhova, V.A., Wadhia, K., Fedoseeva, E.V., and Uchanov, P.V., Bioassay standardization issues in freshwater ecosystem assessment: Test cultures and test conditions, Knowl. Manag. Aquat. Ecosyst., 2018, vol. 419, artic. no. 32.

  112. Van Dyk, J.S. and Pletschke, B., Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment, Chemosphere, 2011, vol. 82, no. 3, pp. 291–307.

    Article  CAS  PubMed  Google Scholar 

  113. Vetrova, E., Kratasyuk, V., and Kudryasheva, N., Bioluminescent characteristics of Lake Shira water, Aquat. Ecol., 2002, vol. 36, pp. 309–315.

    Article  CAS  Google Scholar 

  114. Vetrova, E., Esimbekova, E., Remmel, N., Kotova, S., Beloskov, N., Kratasyuk, V., and Gitelson, I., A bioluminescent signal system: Detection of chemical toxicants in water, Luminescence, 2007, vol. 22, no. 3, pp. 206–214.

    Article  CAS  PubMed  Google Scholar 

  115. Vighi, M. and Villa, S., Ecotoxicology: The challenges for the 21st century, Toxics, 2013, vol. 1, no. 1, pp. 18–35.

    Article  Google Scholar 

  116. Vorobeichik, E.L., Sadykov, O.F., and Farafontov, M.G., Ekologicheskoe normirovanie tekhnogennykh zagryaznenii nazemnykh ekosistem (Ecological Standardization of Technogenic Pollution in Terrestrial Ecosystems), Yekaterinburg: Nauka, 1994.

  117. Wang, N., Increasing the reliability and reproducibility of aquatic ecotoxicology: Learn lessons from aquaculture research, Ecotoxicol. Environ. Saf., 2018, vol. 161, pp. 785–794.

    Article  CAS  PubMed  Google Scholar 

  118. Wang, J.-I., Xia, Q., Zhang, A.-P., Hu, X.-Y., and Lin, C.-M., Determination of organophosphorus pesticide residues in vegetables by an enzyme inhibition method using α‑naphthyl acetate esterase extracted from wheat flour, J. Zhejiang Univ. Sci. B, 2012, vol. 13, no. 4, pp. 267–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, C., Zhang, Q., Wang, F., and Liang, W., Toxicological effects of dimethomorph on soil enzymatic activity and soil earthworm (Eisenia fetida), Chemosphere, 2017, vol. 169, pp. 316–323.

    Article  CAS  PubMed  Google Scholar 

  120. Watthaisong, P., Pongpamorn, P., Pimviriyakul, P., Maenpuen, S., Ohmiya, Y., and Chaiyen, P., A chemo-enzymatic cascade for the smart detection of nitro- and halogenated phenols, Angew. Chem., Int. Ed., 2019, vol. 58, no. 38, pp. 13254–13258.

    Article  CAS  Google Scholar 

  121. Weyandt, R.G., Okologische bewertung von arbeitsflussigkeiten und schmierolen durch biotests, Olhydraul. Pheum., 1990, vol. 34, no. 6, pp. 396–398.

    Google Scholar 

  122. Wieczerzak, M., Namieśnik, J., and Kudłak, B., Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review, Environ. Int., 2016, vol. 94, pp. 341–361.

    Article  CAS  PubMed  Google Scholar 

  123. Wilkinson, C.F., Christoph, G.R., Julien, E., Kelley, J.M., Kronenberg, J., McCarthy, J., and Reiss, R., Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: How to cumulate?, Regul. Toxicol. Pharmacol., 2000, vol. 31, no. 1, pp. 30–43.

    Article  CAS  PubMed  Google Scholar 

  124. Xu, T., Close, D., Smartt, A., Ripp, S., and Sayler, G., Detection of organic compounds with whole-cell bioluminescent bioassays, in Bioluminescence: Fundamentals and Applications in Biotechnology, Thouand, G. and Marks, R., Eds., Berlin: Springer, 2014, vol. 1, pp. 111–151.

    Google Scholar 

  125. Yang, X., Dai, J., Zhao, S., Li, R., Goulette, T., Chen, X., and Xiao, H., Identification and characterization of a novel carboxylesterase from Phaseolus vulgaris for detection of organophosphate and carbamates pesticides, J. Sci. Food Agric., 2018, vol. 98, no. 13, pp. 5095–5104.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, Y., Zeng, C.-M., Tang, L., Huang, D.-L., Jiang, X.-Y., and Chen, Y.-N., A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode, Biosens. Bioelectron., 2007, vol. 22, nos. 9–10, pp. 2121–2126.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, C., Zhou, T., Zhu, L., Juhasz, A., Du, Z., Li, B., Wang, J., Wang, J., and Sun, Y., Response of soil microbes after direct contact with pyraclostrobin in fluvo-aquic soil, Environ. Pollut., 2019, vol. 255, artic. no. 113164.

  128. Zheng, Y., Liu, Z., Jing, Y., Li, J., and Zhan, H., An acetylcholinesterase biosensor based on ionic liquid functionalized graphene-gelatin-modified electrode for sensitive detection of pesticides, Sens. Actuators, B, 2015, vol. 210, pp. 389–397.

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out with financial support from the Russian Foundation for Basic Research, project no. 19-14-50238\19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Esimbekova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by L. Solovyova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esimbekova, E.N., Torgashina, I.G., Kalyabina, V.P. et al. Enzymatic Biotesting: Scientific Basis and Application. Contemp. Probl. Ecol. 14, 290–304 (2021). https://doi.org/10.1134/S1995425521030069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425521030069

Keywords:

Navigation