Skip to main content
Log in

The Main Factor Determining the Dynamics of the Lake Ecosystem under Excessive Nutrient Loading (A Case Study of the Naroch Lakes)

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The system of the Naroch lakes, which includes the eutrophic Lake Batorino, the mesotrophic Lake Myastro, and the oligo-mesotrophic Lake Naroch, serves as a model object for the study of the factors initially influencing the state of a particular lake ecosystem affected by variable nutrient loading. Throughout the 1970s–2000s, these lakes have been going through the stages of anthropogenic eutrophication, deeutrophication, and benthification. A set of continuous data based on the seasonal means ​​of the eight parameters from each lake for the period 1978–2015 has been analyzed by Principal Component and Singular Spectrum Analysis (SSA, or Caterpillar). In addition, we consider the dynamics of the trophic index of each lake, which had been calculated earlier at the same data set. The first main component is the stability of the lake ecosystem under variable nutrient loading, which is inversely related to the trophic state of the water body. This component determines the condition of the Batorino, Myastro and Naroch lakes by 63, 65, and 43% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Adamovich, B.V., Kovalevskaya, R.Z., Radchikova, N.P., et al., The divergence of chlorophyll dynamics in the Naroch lakes, Biophysics (Moscow), 2015, vol. 60, no. 4, pp. 632–638.

    Article  CAS  Google Scholar 

  2. Adamovich, B.V., Zhukova, T.V., Mikheeva, T.M., Kovalevskaya, R.Z., and Luk’yanova, E.V., Long-term variations of the trophic state index in the Narochanskie Lakes and its relation with the major hydroecological parameters, Water Resour., 2016, vol. 43, no. 5, pp. 809–817.

    Article  CAS  Google Scholar 

  3. Adamovich, B.V., Zhukova, T.V., Mikheyeva, T.M., Kovalevskaya, R.Z., Makarevich, T.A., and Zhukova, A.A., Eutrophication, oligotrophication, and benthiphication in Naroch Lakes: 40 years of monitoring, J. Sib. Fed. Univ. Biol., 2017, vol. 10, no. 4, pp. 379–394.

    Article  Google Scholar 

  4. Aivazyan, S.A., Bukhshtaber, V.M., Enyukov, I.S., and Meshalkin, L.D., Prikladnaya statistika. Klassifikatsiya i snizhenie razmernosti (Applied Statistics: Classification and Dimensional Reduction), Moscow: Finansy i Statistika, 1989.

  5. Alimov, A.F., Bogatov, V.V., and Golubkov, S.M., Produktsionnaya gidrobiologiya (Production Hydrobiology), St. Petersburg: Nauka, 2013.

  6. Anneville, O., Ginot, V., Druat, J.C., and Angeli, N., Long-term study (1974–1998) of seasonal changes in the phytoplankton in Lake Geneva: a multi-table approach, J. Planktonic Res., 2002, vol. 24, no. 10, pp. 993–1008.

    Article  CAS  Google Scholar 

  7. Baban, S.M.J., Trophic classification and ecosystem checking of lakes using remotely sensed information, Hydrol. Sci. J., 1996, vol. 41, no. 6, pp. 939–957.

    Article  CAS  Google Scholar 

  8. Balushkina, E.V. and Vinberg, G.G., The dependence between body weight and body length in planktonic organisms, in Obshchie osnovy izucheniya vodnykh ekosistem (General Principles of Studies on Aquatic Ecosystems), Leningrad: Nauka, 1979, pp. 169–172.

  9. Bul’on, V.V., Zakonomernosti pervichnoi produktsii v limnicheksikh ekosistemakh (Pattern of Primary Production in Limnological Ecosystems), St. Petersburg: Nauka, 1994.

  10. Bul’on, V.V., Primary production of plankton in inland reservoirs, Tr. Zool. Inst., Akad. Nauka SSSR, 1983, vol. 98.

    Google Scholar 

  11. Burlakova, L.E., Hinchey, E.K., Karatayev, A.Y., and Rudstam, L.G., U.S. EPA Great Lakes National Program Office monitoring of the Laurentian Great Lakes: insights from 40 years of data collection, J. Great Lakes Res., 2018, vol. 44, no. 4, pp. 535–538. https://doi.org/10.1016/j.jglr.2018.05.017

    Article  Google Scholar 

  12. Carlson, R.E., A trophic state index for lakes, Limnol. Oceanogr., 1977, vol. 11, pp. 361–369.

    Article  Google Scholar 

  13. Draper, N.R. and Smith, H., Applied Regression Analysis, New York: Wiley, 1998, 3rd ed.

    Book  Google Scholar 

  14. George, G., Hurley, M., and Hewitt, D., The impact of climate change on the physical characteristics of the larger lakes in the English Lake district, Freshwater Biol., 2007, vol. 52, no. 9, pp. 1647–1666. https://doi.org/10.1111/j.1365-2427.2007.01773.x

    Article  Google Scholar 

  15. Grimm, V. and Wissel, Ch., Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion, Oecologia, 1996, vol. 109, no. 3, pp. 323–334.

    Article  Google Scholar 

  16. Hillebrand, H., Dürselen, C.-D., Kirschtel, D., et al., Biovolume calculation for pelagic and benthic microalgae, J. Phycol., 1999, vol. 35, pp. 403–424.

    Article  Google Scholar 

  17. Holling, C.S., Resilience and stability of ecological systems, Annu. Rev. Ecol. Syst., 1973, no. 4, pp. 1–23.

  18. Ives, A.R., Diversity and stability in ecological communities, in Theoretical Ecology Principles and Applications, May, R. and McLean, A., Eds., Oxford: Oxford Univ. Press, 2007, pp. 98–110.

    Google Scholar 

  19. Ives, A.R. and Carpenter, S.R., Stability and diversity of ecosystems, Science, 2007, vol. 317, no. 5834, pp. 58–62.

    Article  CAS  Google Scholar 

  20. Jarosiewicz, A., Ficek, D., and Zapadka, T., Eutrophication parameters and Carlson-type trophic state indices in selected Pomeranian lakes, Limnol. Rev., 2011, vol. 11, no. 1, pp. 15–23.

    Article  Google Scholar 

  21. Jolliffe, I.T., Principal Component Analysis, Springer Series in Statistics vol. 29, New York: Springer-Verlag, 2002, 2nd ed.

  22. Karataev, A.Yu. and Burlakova, L.E., Role of zebra mussel in lake ecosystems, Ekologiya, 1995, no. 3, pp. 232–236.

  23. Kazantseva, T.I., Adamovich, B.V., Alimov, A.F., Zhukova, T.V., and Solntsev, V.N., Singular spectrum analysis of hydroecological parameter dynamics of Lake Naroch’ in the years 1978–2015, Russ. J. Ecol., 2018, vol. 49, no. 1, pp. 1–13. https://doi.org/10.1134/S1067413618010071

    Article  Google Scholar 

  24. Kovalenko, K.E., Reavie, E.D., Barbiero, R.P., Burlakova, L.E., Karatayev, A.Y., Rudstam, L.G., et al., Patterns of long-term dynamics of aquatic communities and water quality parameters in the Great Lakes: Are they synchronized? J. Great Lakes Res., 2018, vol. 44, no. 4, pp. 660–669. https://doi.org/10.1016/j.jglr.2018.05.018

    Article  CAS  Google Scholar 

  25. Krogius, F.V., Krokhin, E.M., and Menshutkin, V.V., Tikhookeanskii losos’-nerka v ekosisteme ozera Dal’nego (Kamchatka) (Pacific Sockeye Salmon in the Dal’nee Lake Ecosystem (Kamchatka)), Leningrad: Nauka, 1987.

  26. Lake Kinneret: Ecology and Management, Zohary, T., Sukenik, A., Berman, T., and Nishri, A., Eds., Berlin: Springer-Verlag, 2014.

    Google Scholar 

  27. Matthews, R., Hilles, M., and Pelletier, G., Determining trophic state in Lake Whatcom, Washington (USA), a soft water lake exhibiting seasonal nitrogen limitation, Hydrobiologia, 2002, vol. 468, pp. 101–121.

    Article  Google Scholar 

  28. Metody issledovaniya organicheskogo veshchestva v okeane (Methods of Organic Matter Analysis in the Ocean), Moscow: Nauka, 1980.

  29. Mikheyeva, T.M., Methods for quantitative assessment of nanophytoplankton: a review, Gidrobiol. Zh., 1989, vol. 25, no. 4, pp. 3–21.

    Google Scholar 

  30. Mikheyeva, T.M., Al’goflora Belarusi. Taksonomicheskii katalog (The Algal Flora of Belarus: A Taxonomic Catalog), Minsk: Bel. Gos. Univ., 1999.

  31. Mikheyeva, T.M. and Luk’yanova, E.V., Comparison of quantitative development of phytoplankton in littoral and pelagic zones of the Naroch Lake at the different stages of evolution of trophic status, Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii “Strategiya razvitiya akvakul’tury v usloviyakh XXI veka, Minsk, 23–27 avgusta 2004 g.” (Proc. Int. Sci.-Pract Conf. “The Development Strategy of Aquaculture in 21st Century,” Minsk, August 23–27, 2004), Minsk: Tonpik, 2004, pp. 224–228.

  32. Mikheyeva, T.M. and Luk’yanova, E.V., Comparison of quantitative development of phytoplankton in littoral and pelagic zones of the Myastro Lake at the different stages of evolution of trophic status and specific structure of littoral plankton from Naroch Lake during de-eutrophication, Vopr. Rybn. Khoz. Bel., 2008, no. 24, pp. 315–318.

  33. Mikheyeva, T.M., Parparov, A., Adamovich, B.V., Gal G., and Lukyanova, E.V., The dynamics of freshwater phytoplankton stability in the Naroch Lakes (Belarus), Ecol. Indic., 2017, vol. 81, pp. 481–490.

    Article  Google Scholar 

  34. Nawrocka, L. and Kobes, J., The trophic state of the Vistula Lagoon: an assessment based on selected biotic and abiotic parameters according to the Water Framework Directive, Oceanologia, 2011, vol. 53, no. 3, pp. 881–894.

    Article  Google Scholar 

  35. Oneida Lake: Long-Term Dynamics of a Managed Ecosystem and Its Fishery, Rudstam, L.G., Mills, E.L., Jackson, J.R., and Stewart, D.J., Eds., Bethesda: Am. Fish. Soc., 2016.

    Google Scholar 

  36. Ostapenya, A.P., Petrovich, P.G., Mikheyeva, T.M., Kovalevskaya, R.Z., Kryuchkova, N.M., Potaenko, Yu.S., and Gavrilov, S.I., Specific biological productivity of the Naroch, Myastro, and Batorin lake ecosystems, in Produktsionno-biologicheskie issledovaniya ekosistem presnykh vod (Production-Biological Studies of Freshwater Ecosystems), Vinberg, G.G., Ed., Minsk: Bel. Gos. Univ., 1973, pp. 83–94.

  37. Ostapenya, A.P., Zhukova, T.V., Mikheyeva, T.M., Kovalevskaya, R.Z., Makarevich, T.A., Zhukova, A.A., Luk’yanova, E.V., Nikitina, L.V., Makarevich, O.A., Dubko, N.V., Karabanovich, V.S., Savich, I.V., and Veres, Yu.K., Benthification of lake ecosystem: causes, mechanisms, possible consequences, and research prospects, Tr. Bel. Gos. Univ., 2012, vol. 7-1, pp. 135–148.

    Google Scholar 

  38. Parparov, A. and Gal, G., Quantifying ecological stability: from community to the lake ecosystem, Ecosystems, 2017, vol. 20, no. 5, pp. 1015–1028.

    Article  Google Scholar 

  39. Parparov, A., Gal, G., and Zohary, T., Quantifying the ecological stability of a phytoplankton community: the Lake Kinneret case study, Ecol. Indic., 2015, vol. 56, pp. 134–44.

    Article  Google Scholar 

  40. Romanenko, V.I., Mikrobiologicheskie protsessy produktsii i destruktsii organicheskogo veshchestva vo vnutrennikh vodoemakh (Microbiological Production and Destruction of Organic Matter in Inland Reservoirs), Leningrad: Nauka, 1985.

  41. Rukovodstvo po khimicheskomu analizu poverkhnostnykh vod sushi (A Manual of Chemical Analysis of Land Surface Waters), Semenov, A.D., Ed., Leningrad: Gidrometeoizdat, 1977.

    Google Scholar 

  42. SCOR-UNESCO Working Group No. 17, Determination of Photosynthetic Pigments in Sea-Water, Monographs on Oceanologic Methodology, Paris: UNESCO, 1966, pp. 9–18.

  43. Unifitsirovannye metody analiza vod (Unified Methods of Water Analysis), Moscow: Khimiya, 1973.

  44. Vinberg, G.G., Pervichnaya produktsiya vodoemov (Primary Production of Water Bodies), Minsk: Akad. Nauk Bel. SSR, 1960.

  45. Vollenweider, R.A., Advances in defining critical loading levels for phosphorus in lake eutrophication, Mem. Ist. Ital. Idrobiol. Dott.Marco de Marchi, 1976, vol. 33, pp. 53–83.

    CAS  Google Scholar 

  46. Zhigljavsky, A. and Golyandina, N., Singular Spectrum Analysis for Time Series, New York: Springer-Verlag, 2013.

    Google Scholar 

  47. Zhukova, T.V., Long-term phosphorus dynamics in the Narochanskie lakes and factors determining it, Water Resour., 2013a, vol. 40, no. 5, pp. 510–517.

    Article  CAS  Google Scholar 

  48. Zhukova, T.V., Role of the zebra mussel (Dreissena polymorpha Pallas) in functions of Naroch Lakes: a review, in Dreissenidy: evolyutsiya, sistematika, ekologiya (The Freshwater Mussels (Dreissenidae): Evolution, Systematics, and Ecology), Krylov, A.V. and Pryanichnikova, E.G., Eds., Yaroslavl: Kontsler, 2013b, pp. 55–59.

  49. Zhukova, T.V. and Ostapenya, A.P., Evaluation of efficiency of nature protection measures on watersheds of Naroch Lakes, Prirod. Resur., 2000, no. 3, pp. 68–73.

  50. Zhukova, T.V., Mikheyeva, T.M., Kovalevskaya, R.Z., et al., Byulleten’ ekologicheskogo sostoyaniya ozer Naroch’, Myastro, Batorino (1999–2018 gody) (Bulletin of the Ecological Status of Lakes Naroch, Myastro, and Batorino in Years 1999–2018), Mikheyeva, T.M., Ed., Minsk: Bel. Gos. Univ., 1999–2018.

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 18-54-00003) and the Belarusian Republican Foundation for Basic Research (project B18R-095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Kazantseva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazantseva, T.I., Adamovich, B.V., Alimov, A.F. et al. The Main Factor Determining the Dynamics of the Lake Ecosystem under Excessive Nutrient Loading (A Case Study of the Naroch Lakes). Contemp. Probl. Ecol. 12, 544–561 (2019). https://doi.org/10.1134/S1995425519060052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425519060052

Keywords:

Navigation