Skip to main content
Log in

Randomized Monte Carlo Algorithms for Problems with Random Parameters (“Double Randomization” Method)

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

Randomized Monte Carlo algorithms are constructed by a combination of a basic probabilistic model and its random parameters to investigate parametric distributions of linear functionals. An optimization of the algorithms with a statistical kernel estimator for the probability density is presented. A randomized projection algorithm for estimating a nonlinear functional distribution is formulated and applied to the investigation of the criticality fluctuations of a particle multiplication process in a random medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mikhailov, G.A., Optimization of Weighted Monte Carlo Methods, Springer-Verlag, 1992.

    Book  Google Scholar 

  2. Ambos, A.Yu. and Mikhailov, G.A., Effective Averaging of Stochastic Radiative Models Based on Monte Carlo Simulation, Comput. Math. Math. Phys., 2016, vol. 56, no. 5, pp. 881–893.

    Article  MathSciNet  MATH  Google Scholar 

  3. Mikhailov, G.A., Efficient Algorithms of the Monte Carlo Method for Computing the Correlation Characteristics of Conditional Mathematical Expectations, USSR Comput. Math. Math. Phys., 1977, vol. 17, no. 1, pp. 244–247.

    Article  MathSciNet  Google Scholar 

  4. Mikhailov, G.A. and Voitishek, A.V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo (Numerical Statistical Modeling: Monte Carlo Methods), Moscow: Akademiya, 2006.

    Google Scholar 

  5. Marchuk, G.I., Mikhailov, G.A., Nazaraliev, M.A., Darbinjan, R.A., Kargin, B.A., and Elepov, B.S., The Monte Carlo Methods in Atmospheric Optics, Berlin: Springer, 1980.

    Book  Google Scholar 

  6. Ambos, A.Yu., Numerical Models of Mosaic Homogeneous Isotropic Random Fields and Problems of Radiative Transfer, Num. An. Appl., 2016, vol. 9, no. 1, pp. 12–23.

    Article  MATH  Google Scholar 

  7. Parsen, E., On Estimation of a Probability Density Function and Mode, Ann. Math. Stat., 1962, no. 35, pp. 1065–1076.

    Google Scholar 

  8. Borovkov, A.A., Matematicheskaya statistika (Mathematical Statistics), Novosibirsk: Institute of Mathematics SB RAS, 1997.

    Google Scholar 

  9. Mikhailov, G.A., Prigarin, S.M., and Rozhenko, S.A., Comparative Analysis of Vector Algorithms for Statistical Modeling of Radiative Transfer Process, Russ. J. Num. An. Math. Model., 2018, vol. 33, no. 4, pp. 220–229.

    MATH  Google Scholar 

  10. Lotova, G.Z., Monte Carlo Algorithms for Calculation of Diffusive Characteristics of an Electron Avalanche in Gases, Russ. J. Num. An. Math. Model., 2011, vol. 31, no. 6, pp. 369–377.

    MathSciNet  MATH  Google Scholar 

  11. Epanechnikov, V.A., Non-Parametric Estimation of a Multivariate Probability Density, Theory Prob. Appl., 1969, vol. 14, no. 1, pp. 153–158.

    Article  MathSciNet  Google Scholar 

  12. Chentsov, N.N., Statisticheskie reshayushchie pravila i optimal’nye vyvody (Statistical Decision Rules and Optimal Inference), Moscow: Nauka, 1972.

    Google Scholar 

  13. Mikhailov, G.A., Tracheva, N.V., and Ukhinov, S.A., Randomized Projection Method for Estimating Angular Distributions of Polarized Radiation Based on Numerical Statistical Modeling, Comput. Math. Math. Phys., 2016, vol. 56, no. 9, pp. 1540–1550.

    Article  MathSciNet  MATH  Google Scholar 

  14. Mikhailov, G.A. and Lotova, G.Z., Monte Carlo Methods for Estimating the Probability Distributions of Criticality Parameters of Particle Transport in a Randomly Perturbed Medium, Comput. Math. Math. Phys., 2018, vol. 58, no. 11, pp. 1828–1837.

    Article  MathSciNet  MATH  Google Scholar 

  15. Vladimirov, V.S., On Application of the Monte Carlo Method to Find the Least Characteristic Value and the Corresponding Eigenfunction of a Linear Integral Equation, Teor. Ver. Prim., 1956, vol. 1, no. 1, pp. 113–130.

    MATH  Google Scholar 

  16. Ermakov, S.M. and Mikhailov, G.A., Statisticheskoe modelirovanie (Statistical Modeling), Moscow: Nauka, 1982.

    Google Scholar 

  17. Ambos, A.Yu. and Mikhailov, G.A., Monte Carlo Estimation of Functional Characteristics of Field Intensity of Radiation Passing through a Random Medium, Num. An. Appl., 2018, vol. 11, no. 4, pp. 279–292.

    Article  Google Scholar 

  18. Woodcock, E., Murphy, T., Hemmings, P., and Longworth, S., Techniques Used in the GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry, Proc. Conf. on Applications of Computing Methods to Reactor Problems, 1965, p. 557.

    Google Scholar 

  19. Averina, T.A. and Mikhailov, G.A., Algorithms for Exact and Approximate Statistical Simulation of Poisson Ensembles, Comput. Math. Math. Phys., 2010, vol. 50, no. 6, pp. 951–962.

    Article  MathSciNet  MATH  Google Scholar 

  20. Belyaev, Yu.K., Veroyatnost’ i matematicheskaya statistika. Entsiklopediya (Probability and Mathematical Statistics: Encyclopedia), Moscow: BRE, 1999.

    Google Scholar 

Download references

Acknowledgements

The author would like to thank his former PhD students G.Z. Lotova, A.Yu. Ambos, and others for active participation in the development and realization of randomized algorithms for the Monte Carlo method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Mikhailov.

Additional information

Russian Text © The Author(s), 2019, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2019, Vol. 22, No. 2, pp. 187–200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, G.A. Randomized Monte Carlo Algorithms for Problems with Random Parameters (“Double Randomization” Method). Numer. Analys. Appl. 12, 155–165 (2019). https://doi.org/10.1134/S1995423919020058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423919020058

Keywords

Navigation