Skip to main content
Log in

Non-Markovian Evolution of Multi-level System Interacting with Several Reservoirs. Exact and Approximate

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

An exactly solvable model for the multi-level system interacting with several reservoirs at zero temperatures is presented. Population decay rates and decoherence rates predicted by exact solution and several approximate master equations, which are widespread in physical literature, are compared. The space of parameters is classified with respect to different inequalities between the exact and approximate rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakajima, “On quantum theory of transport phenomena: steady diffusion,” Prog. Theor. Phys. 20, 948–959 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Zwanzig, “Ensemble method in the theory of irreversibility,” J. Chem. Phys. 33, 1338–1341 (1960).

    Article  MathSciNet  Google Scholar 

  3. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2002).

    MATH  Google Scholar 

  4. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, Berlin, 2013).

    Google Scholar 

  5. D. Chruscinski and A. Kossakowski, “General form of quantum evolution,” arXiv:1006.2764 (2010).

  6. D. Chruscinski and A. Kossakowski, “Non-Markovian quantum dynamics: local versus nonlocal,” Phys. Rev. Lett. 104, 070406 (2010).

    Article  Google Scholar 

  7. L. Valkunas, D. Abramavicius, and T. Mancal, Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy (Wiley-VCH, Weinheim, 2013).

    Book  Google Scholar 

  8. H. van Amerongen et al., Light Harvesting in Photosynthesis (CRC, Boca Raton, 2018).

    Google Scholar 

  9. N. Singh and P. Brumer, “Efficient computational approach to the non-Markovian second order quantum master equation: electronic energy transfer in model photosynthetic systems,” Mol. Phys. 110, 1815–1828 (2012).

    Article  Google Scholar 

  10. A. G. Redfield, “The theory of relaxation processes,” Adv. Magn. Opt. Reson. 1, 1–32 (1965).

    Article  Google Scholar 

  11. A. Ishizaki and Y. Tanimura, “Nonperturbative non-Markovian quantum master equation: validity and limitation to calculate nonlinear response functions,” Chem. Phys. 347, 185–193 (2008).

    Article  Google Scholar 

  12. V. May and O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  13. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of N-level systems,” J. Math. Phys. 17, 821–825 (1976).

    Article  MathSciNet  Google Scholar 

  15. E. B. Davies, “Markovian master equations,” Commun. Math. Phys. 39, 91–110 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Accardi, Y. G. Lu, and I. Volovich, Quantum Theory and its Stochastic Limit (Springer, Berlin, 2002).

    Book  MATH  Google Scholar 

  17. N. M. Krylov and N. N. Bogoliubov, “Fokker-Planck equations generated in perturbation theory by a method based on the spectral properties of a perturbed Hamiltonian,” Zap. Kaf. Fiz. Akad. Nauk Ukr. SSR 4, 81–157 (1939).

    Google Scholar 

  18. L. Van Hove, “Quantum-mechanical perturbations giving rise to a statistical transport equation,” Physica (Amsterdam) 21, 517 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Suarez, R. Silbey, and I. Oppenheim, “Memory effects in the relaxation of quantum open systems,” J. Chem. Phys. 97, 5101–5107 (1992).

    Article  Google Scholar 

  20. P. Gaspard and N. Masataka, “Slippage of initial conditions for the Redfield master equation,” J. Chem. Phys. 111, 5668–5675 (1999).

    Article  Google Scholar 

  21. S. Anderloni, F. Benatti, and R. Floreanini, “Redfield reduced dynamics and entanglement,” J. Phys. A 40, 1625–1632 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Farina and V. Giovannetti, “Open quantum system dynamics: recovering positivity of the Redfield equation via partial-secular approximation,” arXiv:1903.07324 (2019).

  23. V. I. Novoderezhkin et al., “Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: a Redfield theory approach,” J. Phys. Chem. B 108, 7445–7457 (2004).

    Article  Google Scholar 

  24. V. I. Novoderezhkin, M. Wendling, and R. van Grondelle, “Intra-and interband transfers in the B800–B850 antenna of rhodospirillum molischianum: Redfield theory modeling of polarized pump-probe kinetics,” J. Phys. Chem. B 107, 11534–11548 (2003).

    Article  Google Scholar 

  25. A. Purkayastha, Ab. Dhar, and M. Kulkarni, “Out-of-equilibrium open quantum systems: a comparison of approximate quantum master equation approaches with exact results,” Phys. Rev. A 93, 062114 (2016).

    Article  Google Scholar 

  26. A. Dodin, T. Tscherbul, R. Alicki, A. Vutha, and P. Brumer, “Secular versus nonsecular Redfield dynamics and Fano coherences in incoherent excitation: an experimental proposal,” Phys. Rev. A 97, 013421 (2018).

    Article  Google Scholar 

  27. D. Kohen, C. C. Marston, and D. J. Tannor, “Phase space approach to theories of quantum dissipation,” J. Chem. Phys. 107, 5236–5253 (1997).

    Article  Google Scholar 

  28. G. Lindblad, “Brownian motion of a quantum harmonic oscillator,” Rep. Math. Phys. 10, 393–406 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Imamoglu, “Stochastic wave-function approach to non-Markovian systems,” Phys. Rev. A 50, 3650 (1994).

    Article  Google Scholar 

  30. B. M. Garraway and P. L. Knight, “Cavity modified quantum beats,” Phys.Rev.A 54, 3592 (1996).

    Article  Google Scholar 

  31. B. M. Garraway, “Nonperturbative decay of an atomic system in a cavity,” Phys.Rev.A 55, 2290 (1997).

    Article  Google Scholar 

  32. B. M. Garraway, “Decay of an atom coupled strongly to a reservoir,” Phys. Rev. A 55, 4636 (1997).

    Article  Google Scholar 

  33. B. J. Dalton, S. M. Barnett, and B. M. Garraway, “Theory of pseudomodes in quantum optical processes,” Phys. Rev. A 64, 053813 (2001).

    Article  MATH  Google Scholar 

  34. B. M. Garraway and B. J. Dalton, “Theory of non-Markovian decay of a cascade atom in high-Q cavities and photonic band gap materials,” J. Phys. B 39, S767 (2006).

    Article  Google Scholar 

  35. A. E. Teretenkov, “Pseudomode approach and vibronic non-Markovian phenomena in light harvesting complexes,” Proc. Steklov Inst. Math. 306 (2019, in press); arXiv:1904.01430.

  36. K. O. Friedrichs, “On the perturbation of continuous spectra,” Commun. Pure Appl. Math. 1, 361–406 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Kossakowski and R. Rebolledo, “On non-Markovian time evolution in open quantum systems,” Open Syst. Inform. Dyn. 14, 265–274 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Levy and R. Kosloff, “The local approach to quantum transport may violate the second law of thermodynamics,” Eur. Phys. Lett. 107, 20004 (2014).

    Article  Google Scholar 

  39. A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” Eur. Phys. Lett. 113, 30005 (2016).

    Article  Google Scholar 

  40. S. V. Kozyrev et al., “Flows in non-equilibrium quantum systems and quantum photosynthesis,” Inf. Dim. Anal., Quant. Prob. Rel. Top. 20, 1750021 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Fleming et al., “The rotating-wave approximation: consistency and applicability from an open quantum system analysis,” J. Phys. 43, 405304 (2010).

    MathSciNet  MATH  Google Scholar 

  42. N. Tang, T.-T. Xu, and H.-S. Zeng, “Comparison between non-Markovian dynamics with and without rotating wave approximation,” Chin. Phys. B 22, 030304 (2013).

    Article  Google Scholar 

  43. H. P. Breuer, “Non-Markovian generalization of the Lindblad theory of open quantum systems,” Phys. Rev. A 75, 022103 (2007).

    Article  MathSciNet  Google Scholar 

  44. V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, “Generalized qubit portrait of the qutrit-state density matrix,” J. Russ. Laser Res. 34, 383–387 (2013).

    Article  Google Scholar 

  45. V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, “New inequality for density matrices of single qudit states,” J. Russ. Laser Res. 35, 457–461 (2014).

    Article  Google Scholar 

  46. V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, “Subadditivity condition for spin tomograms and density matrices of arbitrary composite and noncomposite qudit systems,” J. Russ. Laser Res. 35, 278–290 (2014).

    Article  Google Scholar 

  47. V. I. Manko and T. Sabyrgaliyev, “New entropic inequalities for qudit (spin j = 9/2),” arXiv:1807.00389 (2018).

  48. I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, “Oscillating decay of an unstable system,” Int. J. Theor. Phys. 42, 2403–2421 (2003).

    Article  MATH  Google Scholar 

  49. H. Feshbach, “Unified theory of nuclear reactions,” Ann. Phys. 5, 357–390 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Feshbach, “Aunified theory of nuclear reactions. II,” Ann. Phys. 19, 287–313 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Chruscinski and A. Kossakowski, “Feshbach projection formalism for open quantum systems,” Phys. Rev. Lett. 111, 050402 (2013).

    Article  Google Scholar 

  52. E. Fermi, “Polarization of high energy protons scattered by nuclei,” Nuovo Cim. 11, 407 (1954).

    Article  MATH  Google Scholar 

  53. H. Feshbach, C. E. Porter, and V. F. Weisskopf, “Model for nuclear reactions with neutrons,” Phys. Rev. 96, 448 (1954).

    Article  MATH  Google Scholar 

  54. I. A. Luchnikov et al., “Machine learning of Markovian embedding for non-Markovian quantum dynamics,” arXiv:1902.07019 (2019).

  55. S. Sachdev, “Atom in a damped cavity,” Phys. Rev. A 29, 2627 (1984).

    Article  Google Scholar 

  56. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1999).

    Book  MATH  Google Scholar 

  57. A. S. Trushechkin, “Calculation of coherences in Foerster and modified Redfield theories of excitation energy transfer,” arXiv:1902.00554 (2019).

    Article  Google Scholar 

  58. T. A. Burton, Volterra Integral and Differential Equations (Elsevier, Amsterdam, 2005).

    MATH  Google Scholar 

  59. C. Meier and D. J. Tannor, “Non-Markovian evolution of the density operator in the presence of strong laser fields,” J. Chem. Phys. 111, 3365–3376 (1999).

    Article  Google Scholar 

  60. A. Pomyalov, C. Meier, and D. J. Tannor, “The importance of initial correlations in rate dynamics: a consistent non-Markovian master equation approach,” Chem. Phys. 370, 98–108 (2010).

    Article  Google Scholar 

  61. S. N. Filippov and D. Chruscinski, “Time deformations of master equations,” Phys. Rev. A 98, 022123 (2018).

    Article  Google Scholar 

  62. F. R. Gantmacher, The Theory of Matrices (Am. Math. Society, Providence, 2000), Vol. 2.

    Google Scholar 

  63. M. M. Postnikov, Stable Polynomials (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  64. P. Rebentrost et al., “Environment-assisted quantum transport,” New J. Phys. 11, 033003 (2009).

    Article  Google Scholar 

  65. K. Bradler et al., “Identifying the quantum correlations in light-harvesting complexes,” Phys. Rev. A 82, 062310 (2010).

    Article  Google Scholar 

  66. G. S. Engel et al., “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature (London, U.K.) 446(7137), 782 (2007).

    Article  Google Scholar 

  67. H. Lee, Y. C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science (Washington, DC, U. S.) 316(5830), 1462–1465 (2007).

    Article  Google Scholar 

  68. M. Mohseni et al., “Environment-assisted quantum walks in photosynthetic energytransfer,” J. Chem. Phys. 129, 11B603 (2008).

    Article  Google Scholar 

  69. M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008).

    Article  Google Scholar 

  70. E. Collini et al., “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature (London, U.K.) 463(7281), 644 (2010).

    Article  Google Scholar 

  71. G. D. Scholes et al., “Lessons from nature about solar light harvesting,” Nat. Chem. 3, 763 (2011).

    Article  Google Scholar 

  72. J. Wilkie, “Positivity preserving non-Markovian master equations,” Phys. Rev. E 62, 8808 (2000).

    Article  MathSciNet  Google Scholar 

  73. G. Chen and R. Grimmer, “Integral equations as evolution equations,” J. Differ. Equat. 45, 53–74 (1982).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks A.S. Trushechkin for sufficient help in setting the main goals of this study and fruitful discussion at all the steps of the study. The author thanks I.V. Volovich, S.V. Kozyrev, B.O. Volkov and A.I. Mikhailov for the useful discussion of the problems considered in the work.

Funding

This work was supported by the Russian Science Foundation, project no. 17-71-20154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Teretenkov.

Additional information

Submitted by S. A. Grigoryan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teretenkov, A.E. Non-Markovian Evolution of Multi-level System Interacting with Several Reservoirs. Exact and Approximate. Lobachevskii J Math 40, 1587–1605 (2019). https://doi.org/10.1134/S1995080219100263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080219100263

Keywords and phrases

Navigation