Skip to main content
Log in

Kinetics of the decomposition of disilane molecules on a silicon growth surface in vacuum chemical epitaxy

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In the framework of the kinetic approach based on data of technological experiments, the range of characteristic rates of decomposition of disilane radical molecules adsorbed on the surface during the growth of a silicon layer is determined. The relationship between the rate of incorporation of silicon atoms into a growing crystal and the characteristic rate of pyrolysis of hydride molecules on the growing surface is established. The temperature dependences of the decomposition rate of disilane molecules exhibit an unusual activationless behavior in the growth temperature range. The form of the observed dependences is determined by the pyrolysis model, conditions of transferred of hydrogen from an adsorbed molecule onto the surface of the growing layer, being a function of the gas pressure and temperature in the reactor. It is demonstrated that the basic features of the behavior of the decomposition rate of disilane molecules are controlled by the specifics of the interaction of the silicon dihydride molecular beam with the growth surface under conditions of low and high degrees of bonding of hydrogen to free surface bonds. The temperature dependences are qualitatively described by a relation composed of two activation curves with different activation energies at low and high temperatures and preexponential factors depending on the surface coverage by hydrogen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. Bramblett, Q. Lu, T. Karasawa, M. A. Hasan, S. K. Jo, and J. E. Greene, J. Appl. Phys. 76, 1884 (1994).

    Article  CAS  Google Scholar 

  2. B. A. Ferguson, C. T. Reeves, D. J. Safarik, and C. B. Mullins, J. Phys. Chem. 113, 2470 (2000).

    Article  CAS  Google Scholar 

  3. T. Murata, H. Nakazawa, Y. Tsukidate, and M. Suemitsu, Appl. Phys. Lett. 79, 746 (2001).

    Article  CAS  Google Scholar 

  4. J. Shi, E. S. Tok, and H. C. Kang, J. Chem. Phys. 127, 164713 (2007).

    Article  CAS  Google Scholar 

  5. R. D. Smardon and G. P. Srivastava, J. Chem. Phys. 123, 174703 (2007).

    Article  Google Scholar 

  6. R. Q. M. Ng, E. S. Tok, and H. C. Kang, J. Chem. Phys. 130, 114702 (2009).

    Article  Google Scholar 

  7. A. V. Potapov, L. K. Orlov, and S. V. Ivin, Thin Solid Films 336, 191 (1999).

    Article  Google Scholar 

  8. S. M. Gates, C. M. Greenlief, and D. B. Beach, J. Chem. Phys. 93, 7493 (1990).

    Article  CAS  Google Scholar 

  9. U. Hofer, L. Li, and T. F. Heinz, Phys. Rev. B 45, 9485 (1992).

    Article  Google Scholar 

  10. C. M. Greenlief and M. Lier, Appl. Phys. Lett. 64, 601 (1994).

    Article  CAS  Google Scholar 

  11. L. K. Orlov and T. N. Smyslova, Semiconductors 39, 1275 (2005).

    Article  CAS  Google Scholar 

  12. K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. Yates, and K. C. Janda, J. Chem. Phys. 92, 5700 (1990).

    Article  CAS  Google Scholar 

  13. Y. Pauleau and D. Tonneau, J. Appl. Phys. 91, 1553 (2002).

    Article  CAS  Google Scholar 

  14. L. K. Orlov and S. V. Ivin, Semiconductors 45, 557 (2011).

    Article  CAS  Google Scholar 

  15. L. K. Orlov and T. N. Smyslova, Tech. Phys. 57, 1547 (2012).

    Article  CAS  Google Scholar 

  16. L. K. Orlov, S. V. Ivin, and T. N. Smyslova, Russ. J. Phys. Chem. B 5, 168 (2011).

    Article  CAS  Google Scholar 

  17. L. K. Orlov and T. N. Smyslova, in Proceedings of the 11th National Conference on Crystal Growth (NRTs KI, Moscow, 2010), Vol. 1, p. 69.

    Google Scholar 

  18. A. Vittadini and A. Selloni, Phys. Rev. Lett. 75, 4756 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Smyslova.

Additional information

Original Russian Text © N.L. Ivina, T.N. Smyslova, 2013, published in Khimicheskaya Fizika, 2013, Vol. 32, No. 5, pp. 42–49.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivina, N.L., Smyslova, T.N. Kinetics of the decomposition of disilane molecules on a silicon growth surface in vacuum chemical epitaxy. Russ. J. Phys. Chem. B 7, 244–250 (2013). https://doi.org/10.1134/S1990793113050060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793113050060

Keywords

Navigation