Skip to main content
Log in

Extracellular vesicles of blood plasma: content, origin, and properties

  • Reviews
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Extracellular vesicles (EVs) are bilayer membrane fragments that are released by different cell types upon activation or death. The most well studied EVs are those of blood plasma. Two types of EVs are usually distinguished: exosomes (formed by the membranes of intracellular compartments, 50–100 nm in diameter) and ectosomes (also called microparticles or microvesicles, formed from plasma membrane, 100–1000 nm in diameter). The real picture is much more complicated and is still poorly understood. EVs are enriched by various proteins, mRNA and miRNA, and the EV lipid and protein composition can substantially differ from that of the parental cells, from which EV originate. The blood concentration of EVs greatly increases in many diseases and conditions. EVs have a wide spectrum of biological activities, from pro-coagulant to immunomodulating ones. This activity can be physiologically important and is believed to be absolutely important pathophysiologically. In recent studies, EVs are considered to be important not only as objects of basic research, but also as potential biomarkers, drug candidates, drug carriers, or therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf P. 1967. The nature and significance of platelet products in human plasma. Br. J. Haematol. 13, 269–288.

    Article  CAS  PubMed  Google Scholar 

  2. Hargett L.A., Bauer N.N. 2013. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication. Pulm. Circ. 3, 329–340.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Panteleev M.A., Saenko E.L., Ananyeva N.M., Ataullakhanov F.I. 2004. Kinetics of Factor X activation by the membrane-bound complex of Factor IXa and Factor VIIIa. Biochem. J. 381, 779–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Panteleev M.A., Ananyeva N.M., Greco N.J., Ataullakhanov F.I., Saenko E.L. 2006. Factor VIIIa regulates substrate delivery to the intrinsic factor X-activating complex. FEBS J. 273, 374–387.

    Article  CAS  PubMed  Google Scholar 

  5. Panteleev M.A., Dashkevich N.M., Ataullakhanov F.I. 2015. Hemostasis and thrombosis beyond biochemistry: Roles of geometry, flow and diffusion. Thromb. Res. 136, 699–711.

    Article  CAS  PubMed  Google Scholar 

  6. Sinauridze E.I., Kireev D.A., Popenko N.Y., Pichugin A.V., Panteleev M.A., Krymskaya O.V., Ataullakhanov F.I. 2007. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 97, 425–434.

    CAS  PubMed  Google Scholar 

  7. Dashkevich N.M., Ovanesov M.V., Balandina A.N., Karamzin S.S., Shestakov P.I., Soshitova N.P., Tokarev A.A., Panteleev M.A., Ataullakhanov F.I. 2012. Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys. J. 103, 2233–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herring J.M., McMichael M.A., Smith S.A. 2013. Microparticles in health and disease. J. Vet. Intern. Med. 27, 1020–1033.

    Article  CAS  PubMed  Google Scholar 

  9. Barteneva N.S., Fasler-Kan E., Bernimoulin M., Stern J.N., Ponomarev E.D., Duckett L., Vorobjev I.A. 2013. Circulating microparticles: Square the circle. BMC Cell Biol. 14, 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Pol E., Boing A.N., Gool E.L., Nieuwland R. 2016. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J. Thromb. Haemost. 14, 48–56.

    Article  PubMed  Google Scholar 

  11. Cocucci E., Meldolesi J. 2015. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 25, 364–372.

    Article  CAS  PubMed  Google Scholar 

  12. Loyer X., Vion A.C., Tedgui A., Boulanger C.M. 2014. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ. Res. 114, 345–353.

    Article  CAS  PubMed  Google Scholar 

  13. Schindler S.M., Little J.P., Klegeris A. 2014. Microparticles: A new perspective in central nervous system disorders. Biomed. Res. Int. 2014, 756327.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Westerman M., Porter J.B. 2016. Red blood cellderived microparticles: An overview. Blood Cells Mol. Dis. 59, 134–139.

    Article  CAS  PubMed  Google Scholar 

  15. Halim A.T., Ariffin N.A., Azlan M. 2016. Review: The multiple roles of monocytic microparticles. Inflammation. 39, 1277–1284.

    Article  PubMed  Google Scholar 

  16. Curtis A.M., Edelberg J., Jonas R., Rogers W.T., Moore J.S., Syed W., Mohler E.R., 2013. Endothelial microparticles: Sophisticated vesicles modulating vascular function. Vasc. Med. 18, 204–214.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gonzalez E., Falcon-Perez J.M. 2015. Cell-derived extracellular vesicles as a platform to identify low-invasive disease biomarkers. Expert Rev. Mol. Diagn. 15, 907–923.

    Article  CAS  PubMed  Google Scholar 

  18. Agouni A., Andriantsitohaina R., Martinez M.C. 2014. Microparticles as biomarkers of vascular dysfunction in metabolic syndrome and its individual components. Curr. Vasc. Pharmacol. 12, 483–492.

    Article  CAS  PubMed  Google Scholar 

  19. Royo F., Falcon-Perez J.M. 2012. Liver extracellular vesicles in health and disease. J. Extracell. Vesicles. 1, 18825.

    Article  CAS  Google Scholar 

  20. Aharon A., Brenner B. 2013. Placenta-derived microparticles. Thromb. Res. 131 (Suppl. 1), S22–S24.

    Article  CAS  PubMed  Google Scholar 

  21. Shapiro I.M., Landis W.J., Risbud M.V. 2015. Matrix vesicles: Are they anchored exosomes? Bone. 79, 29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raposo G., Stoorvogel W. 2013. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hwang I. 2013. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol. Cells. 36, 105–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arraud N., Linares R., Tan S., Gounou C., Pasquet J.M., Mornet S., Brisson A.R. 2014. Extracellular vesicles from blood plasma: Determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 12, 614–627.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson H.C., Garimella R., Tague S.E. 2005. The role of matrix vesicles in growth plate development and biomineralization. Front. Biosci. 10, 822–837.

    Article  CAS  PubMed  Google Scholar 

  26. Stegmayr B., Ronquist G. 1982. Promotive effect on human sperm progressive motility by prostasomes. Urol. Res. 10, 253–257.

    Article  CAS  PubMed  Google Scholar 

  27. Gross J.C., Chaudhary V., Bartscherer K., Boutros M. 2012. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045.

    Article  CAS  PubMed  Google Scholar 

  28. Bakhti M., Winter C., Simons M. 2011. Inhibition of myelin membrane sheath formation by oligodendrocyte- derived exosome-like vesicles. J. Biol. Chem. 286, 787–796.

    Article  CAS  PubMed  Google Scholar 

  29. Panteleev M.A., Ananyeva N.M., Greco N.J., Ataullakhanov F.I., Saenko E.L. 2005. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J. Thromb. Haemost. 3, 2545–2553.

    Article  CAS  PubMed  Google Scholar 

  30. Podoplelova N.A., Sveshnikova A.N., Kotova Y.N., Eckly A., Receveur N., Nechipurenko D.Y., Obydennyi S.I., Kireev, II, Gachet C., Ataullakhanov F.I., Mangin P.H., Panteleev M.A. 2016. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood. 128, 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  31. Obydennyy S.I., Sveshnikova A.N., Ataullakhanov F.I., Panteleev M.A. 2016. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. J. Thromb. Haemost. 14, 1867–1881.

    Article  CAS  PubMed  Google Scholar 

  32. Sveshnikova A.N., Ataullakhanov F.I., Panteleev M.A. 2015. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. Mol. Biosyst. 11, 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  33. Shakhidzhanov S.S., Shaturny V.I., Panteleev M.A., Sveshnikova A.N. 2015. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation. Biochim. Biophys. Acta. 1850, 2518–2529.

    Article  CAS  PubMed  Google Scholar 

  34. Kotova Y.N., Ataullakhanov F.I., Panteleev M.A. 2008. Formation of coated platelets is regulated by the dense granule secretion of adenosine 5'diphosphate acting via the P2Y12 receptor. J. Thromb. Haemost. 6, 1603–1605.

    Article  CAS  PubMed  Google Scholar 

  35. Topalov N.N., Yakimenko A.O., Canault M., Artemenko E.O., Zakharova N.V., Abaeva A.A., Loosveld M., Ataullakhanov F.I., Nurden A.T., Alessi M.C., Panteleev M.A. 2012. Two types of procoagulant platelets are formed upon physiological activation and are controlled by integrin alpha(IIb)beta(3). Arterioscler. Thromb. Vasc. Biol. 32, 2475–2483.

    Article  CAS  PubMed  Google Scholar 

  36. Topalov N.N., Kotova Y.N., Vasil’ev S.A., Panteleev M.A. 2012. Identification of signal transduction pathways involved in the formation of platelet subpopulations upon activation. Br. J. Haematol. 157, 105–115.

    Article  CAS  PubMed  Google Scholar 

  37. Ignatova A.A., Karpova O.V., Trakhtman P.E., Rumiantsev S.A., Panteleev M.A. 2016. Functional characteristics and clinical effectiveness of platelet concentrates treated with riboflavin and ultraviolet light in plasma and in platelet additive solution. Vox Sang. 110, 244–252.

    Article  CAS  PubMed  Google Scholar 

  38. Artemenko E.O., Yakimenko A.O., Pichugin A.V., Ataullakhanov F.I., Panteleev M.A. 2016. Calpaincontrolled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets. Biochem. J. 473, 435–448.

    Article  CAS  PubMed  Google Scholar 

  39. Lipets E., Vlasova O., Urnova E., Margolin O., Soloveva A., Ostapushchenko O., Andersen J., Ataullakhanov F., Panteleev M. 2014. Circulating contactpathway- activating microparticles together with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS One. 9, e87692.

    Article  Google Scholar 

  40. Zakharova N.V., Artemenko E.O., Podoplelova N.A., Sveshnikova A.N., Demina I.A., Ataullakhanov F.I., Panteleev M.A. 2015. Platelet surface-associated activation and secretion-mediated inhibition of coagulation factor XII. PLoS One. 10, e0116665.

    Article  Google Scholar 

  41. Terentyeva V.A., Sveshnikova A.N., Panteleev M.A. 2015. Kinetics and mechanisms of surface-dependent coagulation factor XII activation. J. Theor. Biol. 382, 235–243.

    Article  CAS  PubMed  Google Scholar 

  42. Surov S., Ovsepyan R., Vysochin I., Kobzeva E., Khvatov V., Panteleev M., Vuimo T. 2015. Procoagulant impact of the plasmapheresis procedure on coagulation state of collected plasma. Blood Transfus. 13, 651–655.

    PubMed  PubMed Central  Google Scholar 

  43. Lu L., Chen X.M., Tao H.M., Xiong W., Jie S.H., Li H.Y. 2015. Regulation of the expression of zinc finger protein genes by microRNAs enriched within acute lymphoblastic leukemia-derived microvesicles. Genet. Mol. Res. 14, 11884–11895.

    Article  CAS  PubMed  Google Scholar 

  44. Nomura S., Shimizu M. 2015. Clinical significance of procoagulant microparticles. J. Intensive Care. 3, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Akyurekli C., Le Y., Richardson R.B., Fergusson D., Tay J., Allan D.S. 2015. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev. 11, 150–160.

    Article  CAS  PubMed  Google Scholar 

  46. Nielsen C.T., Rasmussen N.S., Heegaard N.H., Jacobsen S. 2016. “Kill” the messenger: Targeting of cellderived microparticles in lupus nephritis. Autoimmun. Rev. 15, 719–725.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Panteleev.

Additional information

Original Russian Text © M.A. Panteleev, A.A. Abaeva, A.N. Balandina, A.V. Belyaev, D.Y. Nechipurenko, S.I. Obydennyi, A.N. Sveshnikova, A.M. Shibeko, F.I. Ataullakhanov, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 3, pp. 155–161.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panteleev, M.A., Abaeva, A.A., Balandina, A.N. et al. Extracellular vesicles of blood plasma: content, origin, and properties. Biochem. Moscow Suppl. Ser. A 11, 187–192 (2017). https://doi.org/10.1134/S1990747817030060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747817030060

Keywords

Navigation