Skip to main content
Log in

Age-dependent changes of mitochondrial functions in Ca2+-induced opening of permeability transition pore

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Mitochondria are intracellular organelles, which provide cells with energy and participate in multiple processes of cell vital functions. Within one of the numerous theories of aging, dysfunction of mitochondria is considered to lead to tissue degeneration and induce the initial stage in developing of degenerative diseases. Since mitochondria play a clue role in apoptosis/necrosis processes, it was suggested that dysfunction of mitochondria observed under aging is related with disturbance of programmed cell death regulation. In the present study, a comparative examination of parameters of the functional states of mitochondria isolated from young (2–3-months old) and old (20–22-months old) rats under conditions of opening of unselective pore (PTP, permeability transition pore) has been performed. Ca2+ accumulation rate in mitochondria isolated from old rats was found to be decreased by 25–30%, threshold calcium concentration was lowered to 50%, and the swelling of mitochondria loaded by calcium was stimulated 3–4-fold. Production of reactive oxygen species (ROS) has been also determined in these mitochondria. In old mitochondria superoxide anion level was increased. In addition, H2O2 content was found to be 2 times higher in mitochondria with PTP opened. Using electron microscopy method, a decreased amount of cristae in mitochondria was revealed under aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beal, M.F,. Aging, Energy, and Oxidative Stress in Neurodegenerative Diseases, Ann. Neurol., 1995, vol. 38, pp. 357–366.

    Article  CAS  PubMed  Google Scholar 

  2. Papa, S. and Skulachev, V.P., Reactive Oxygen Species, Mitochondria, Apoptosis and Aging, Mol. Cell. Biochem., 1997, vol. 174, pp. 305–319.

    Article  CAS  PubMed  Google Scholar 

  3. Ames, B.N., Shigenaga, M.K., and Hagen, T.M., Oxidants, Antioxidants and the Degenerative Diseases of Aging, Proc. Natl Acad. Sci. USA, 1993, vol 90, pp. 7915–7921.

    Article  CAS  PubMed  Google Scholar 

  4. Khachaturian, Z.S., Calcium Hypothesis of Alzheimer’s Disease and Brain Injury, Ann. NY Acad. Sci., 1994, vol. 747, pp. 1–11.

    CAS  PubMed  Google Scholar 

  5. Wallac, D.C., Shoffne, J.M., and Trounce, I., Mitochondrial DNA Mutations in Human Degenerative Diseases and Aging, Biochim. Biophys. Acta, 1995, vol. 1271, pp. 141–151.

    Google Scholar 

  6. Thibaul, O., Porter, N., Chen, K., Blalock, E., Kaminker, P., Clodfelte, G., Brewer, L., and Landfield, P., Calcium Dysregulation in Neuronal Aging and Alzheimer’s Disease; History and New Directions, Cell Calcium, 1998, vol. 24, pp. 417–433.

    Article  Google Scholar 

  7. Verkhratsky, A. and Toescu, E., Calcium and Neuronal Aging, Trends Neurosci., 1998, vol. 21, pp. 2–7.

    Article  CAS  PubMed  Google Scholar 

  8. Umansky, S.R., Apoptosis: Molecular and Cell Mechanisms, Uspehi sovremennoy biologii (Rus.), 1982, vol. 1, pp. 139–148.

    Google Scholar 

  9. Stadtman, E.R., Protein Oxidation and Aging, Science,. 1992, vol. 257, pp. 1220–1224.

    Article  CAS  PubMed  Google Scholar 

  10. Ames, B.A., Shingenaga, M.K., and Park, E.M., Oxidation Damage and Repair. Chemical, Biological and Medical Aspects, Davies, K.J.A., Ed., Elmsford, New York, Pergamon, 1991, pp. 181–187.

    Google Scholar 

  11. Toyokuni, S., Okamoto, K., Yodoi, J., and Hiai, H., Persistent Oxidative Stress in Cancer, FEBS Lett., 1995, vol., 358, pp. 1–3.

    Article  CAS  PubMed  Google Scholar 

  12. Hagen, T., Yowe, D., Bartholomew, J., Wehr, C., Do, K., Park, J., and Ames, B., Mitochondrial Decay in Hepatocytes from Old Rats: Membrane Potential Declines, Heterogeneity, and Oxidants Increase, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 3064–3069.

    Article  CAS  PubMed  Google Scholar 

  13. Kwong, L. and Sohal, R., Age-related Changes in Activities of Mitochondrial Electron Transport Complexes in Various Tissues of the Mouse, Arch. Biochem. Biophys., 2000, vol. 373, pp. 16–22.

    Article  CAS  PubMed  Google Scholar 

  14. Gerschman, R., Gilbert, D.L., Nye, S.W., Dwyer, P., and Fenn, W.O., Oxygen Poisoning and X-irradiation: A Mechanism in Common, Science, 1954, vol. 119, pp. 623–626.

    Article  CAS  PubMed  Google Scholar 

  15. Navarro, A. and Boveris, A., The Mitochondrial Energy Transduction System and the Aging Process, Am. J. Physiol. Cell. Physiol., 2007, vol. 292, pp. 670–686.

    Article  Google Scholar 

  16. Cocco, T., Sgobbo, P., Clemente M., Lopriore, B., Grattagliano, I., Di Paolo, M., and Villani, G., Tissue-Specific Changes of Mitochondrial Functions in Aged Rats: Effect of a Long-Term Dietary Treatment with N-Acetylcysteine, Free Radic. Biol. Med., 2005, vol. 38, pp. 796–805.

    Article  CAS  PubMed  Google Scholar 

  17. Navarro, A., Gomez, C., Sanchez-Pino, M.J., Gonzalez, H., Bandez, M.J., Boveris, A.D., and Boveris, A., Vitamin E at High Doses Improves Survival, Neurological Performance, and Brain Mitochondrial Function in Aging Male Mice, Am. J. Physiol. Regul. Integr. Comp. Physiol.,, 2005, vol. 289, pp. 1392–1399.

    Google Scholar 

  18. Pi, Y., Goldenthal, M.J., and Marin-Garci, J., Mitochondrial Channelopathies in Aging, J. Mol. Med., 2007, vol. 85, pp. 937–951.

    Article  CAS  PubMed  Google Scholar 

  19. Rottenberg, H. and Wu, S., Mitochondrial Dysfunction in Lymphocytes from Old Mice: Enhanced Activation of the Permeability Transition, Biochem. Biophys. Res. Commun., 1997, vol. 240, pp. 68–74.

    Article  CAS  PubMed  Google Scholar 

  20. Mather, M. and Rottenberg, H., Aging Enhances the Activation of the Permeability Transition Pore in Mitochondria, Biochem. Biophys. Res. Commun., 2000, vol. 273, pp. 603–608.

    Article  CAS  PubMed  Google Scholar 

  21. Bernardi, P., The Permeability Transition Pore. Control Point of a Cyclosporine Sensitive Channel Involved in Cell Death, Biochem. Byophys. Acta, 1996, vol. 1275, pp. 5–9.

    Article  Google Scholar 

  22. Crompton, M., Mitochondria and Aging: A Role for the Permeability Transition? Aging Cell, 2004, vol. 3, pp. 3–6.

    Article  CAS  PubMed  Google Scholar 

  23. Sims, N.R., Rapid Isolation of Metabolically Active Mitochondria from Rat Brain and Subregions Using Percoll Density Gradient Centrifugation, J. Neurochem., 1990, vol. 55, pp. 698–707.

    Article  CAS  PubMed  Google Scholar 

  24. Lowry, O.H., Rosebrough, N.J., Farra, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  25. Azarashvili, T., Grachev, D., Krestinina, O., Evtodienko, Y., Yurkov, I., Papadopoulos, V., and Reiser, G., The Peripheral-type Benzodiazepine Receptor is Involved in Control of Ca2+-Induced Permeability Transition Pore Opening in Rat Brain Mitochondria, Cell Calcium, 2007, vol. 42, pp. 27–39.

    Article  CAS  PubMed  Google Scholar 

  26. Kambayashi, Y. and Ogino, K., Reestimation of Cypridina Luciferin Analogs (MCLA) as a Chemiluminescence Probe to Detect Active Oxygen Species — Cautionary Note for Use of MCLA, J. Toxicol. Sci., 2003, vol. 28, pp. 139–148.

    Article  CAS  PubMed  Google Scholar 

  27. Gredilla, R., Phaneuf, S., Selman, C., Kendaiah, S., Leeuwenburgh, C., and Barja, G., Short-Term Caloric Restriction and Sites of Oxygen Radical Generation in Kidney and Skeletal Muscle Mitochondria, Ann. N Y Acad. Sci., 2004, vol. 1019, pp. 333–342.

    Article  CAS  PubMed  Google Scholar 

  28. Sanz, A., Pamplona, R., and Barja, G., Is the Mitochondrial Free Radical Theory of Aging Intact? Antioxid. Redox Signal., 2006, vol. 8, pp. 582–599.

    Article  CAS  PubMed  Google Scholar 

  29. Sanz, A., Caro, P., Iban~ez, J., Gómez, J., Gredilla, R., and Barja, G. Dietary Restriction at Old Age Lowers Mitochondrial Oxygen Radical Production and Leak at Complex I and Oxidative DNA Damage in Rat Brain, J. Bioenerg. Biomembr., 2005, vol. 37, pp. 83–90.

    Article  CAS  PubMed  Google Scholar 

  30. Petrosillo, G., Matera, M., Casanova, G., Ruggiero, F.M., and Paradies, G., Mitochondrial Dysfunction in Rat Brain with Aging. Involvement of Complex I, Reactive Oxygen Species and Cardiolipin, Neurochem. Int., 2008, vol. 53, pp. 126–131.

    Article  CAS  PubMed  Google Scholar 

  31. Kudin, A.P., Malinska, D., and Kunz, W.S., Sites of Generation of Reactive Oxygen Species in Homogenates of Brain Tissue Determined with the Use of Respiratory Substrates and Inhibitors, Biochim Biophys. Acta, 2008, vol. 1777, pp. 689–695.

    Article  CAS  PubMed  Google Scholar 

  32. Kumaran, S., Subathra, M., Balu, M., and Panneerselvam, C., Age-Associated Decreased Activities of Mitochondrial Electron Transport Chain Complexes in Heart and Skeletal Muscle: Role of L-Carnitine, Chem. Biol. Interact., 2004, vol. 148, pp. 11–18.

    Article  CAS  PubMed  Google Scholar 

  33. Dencher, N.A., Frenzel, M., Reifschneider, N.H., Sugawa, M., and Krause, F., Proteome Alterations in Rat Mitochondria Caused by Aging, Ann. N.Y. Acad. Sci., 2007, vol. 1100, pp. 291–298.

    Article  CAS  PubMed  Google Scholar 

  34. Carrillo, M.C., Kanai, S., Sato, Y., and Kitani, K., Age-Related Changes in Antioxidant Enzyme Activities Are Region and Organ, As Well As Sex, Selective in the Rat, Mech. Ageing. Dev., 1992, vol. 65, pp. 187–198.

    Article  CAS  PubMed  Google Scholar 

  35. Meng, Q., Wong, Y.T., Chen, J., and Ruan, R., Age-Related Changes in Mitochondrial Function and Anti-oxidative Enzyme Activity in Fischer 344 Rats, Mech. Ageing Dev., 2007, vol. 128, pp. 286–292.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Azarashvili.

Additional information

Original Russian Text © O.V. Krestinina, A.G. Kruglov, D.E. Grachev, Yu.L. Baburina, Yu.V. Evtodienko, D.A. Moshkov, I.M. Santalova, T.S. Azarashvili, 2010, published in Biologicheskie Membrany, 2010, Vol. 27, No. 2, pp. 177–183.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krestinina, O.V., Kruglov, A.G., Grachev, D.E. et al. Age-dependent changes of mitochondrial functions in Ca2+-induced opening of permeability transition pore. Biochem. Moscow Suppl. Ser. A 4, 180–186 (2010). https://doi.org/10.1134/S199074781002008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074781002008X

Key words

Navigation