Skip to main content
Log in

Comparative assessment of different approaches for obtaining terminally differentiated cell lines

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The study of pathogenesis of muscle disorders needs an appropriate cell model. In the field of muscle research, there is no general cell line considered standard for studying muscular and neuromuscular diseases. Most cell lines are incapable of differentiation into a muscle lineage exhibiting morphological and physiological properties of mature muscle cells and can hardly be genetically modified. The goal of our study was to find an informative cell model of muscle differentiation suitable for examination of muscular pathogenesis in vitro. We assayed cultured human mesenchymal stem cells (MSCs), mature murine muscle fibers, and primary murine satellite cells. It was shown that MSCs had very low capacity for myogenic differentiation; they were able to differentiate only in the presence of C2C12 cells. Lentiviral transduction had a toxic effect in primary myofiber cultures, and positively transduced cells were unable to respond to electrical stimulation, i.e., were functionally inactive. Satellite cells proved to be the most appropriate cell model, since they were easily transduced with lentiviruses and rapidly formed myotubes in the differentiation medima. Functional analysis of induced myotubes showed their ability to react to electrical and chemical stimulation. The patch-clump technique showed the presence of potassium and calcium channels. Collectively, the results show that cultured satellite cells are the most promising cell line for further experiments to explore molecular pathways in muscle pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MMSC:

multipotent mesenchymal stem cell

References

  • Abmayr, S.M. and Pavlath, G.K., Myoblast fusion: lessons from flies and mice, Development, 2012, vol. 139, pp. 641–656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bachrach, E., Li, S., Perez, A.L., Schienda, J., Liadaki, K., Volinski, J., Flint, A., Chamberlain, J., and Kunkel, L.M., Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 3581–3586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biressi, S., Molinaro, M., and Cossu, G., Cellular heterogeneity during vertebrate skeletal muscle development, Dev. Biol., 2007, vol. 308, pp. 281–293.

    Article  CAS  PubMed  Google Scholar 

  • Burattini, S., Ferri, P., Battistelli, M., Curci, R., Luchetti, F., and Falcieri, E., C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization, Eur. J. Histochem., 2004, vol. 48, pp. 223–233.

    CAS  PubMed  Google Scholar 

  • Day, K., Shefer, G., Richardson, J.B., Enikolopov, G., and Yablonka-Reuveni, Z., Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells, Dev. Biol., 2007, vol. 304, pp. 246–259.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di, Rocco, G., Iachininoto, M.G., Tritarelli, A., Straino, S., Zacheo, A., Germani, A., Crea, F., and Capogrossi, M.C., Myogenic potential of adipose-tissue-derived cells, J. Cell Sci., 2006, vol. 119, pp. 2945–2952.

    Article  PubMed  Google Scholar 

  • Dmitrieva, R.I., Minullina, I.R., Bilibina, A.A., Tarasova, O.V., Anisimov, S.V., and Zaritskey, A.Y., Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities, Cell Cycle, 2012, vol. 11, pp. 377–83.

    Article  CAS  PubMed  Google Scholar 

  • Hawke, T.J. and Garry, D.J., Myogenic satellite cells: physiology to molecular biology, J. Appl. Physiol., 2001, vol. 91, pp. 534–551.

    CAS  PubMed  Google Scholar 

  • Ilkovski, B., Clement, S., Sewry, C., North, K.N., and Cooper, S.T., Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy, Neuromuscul. Disord., 2005, vol. 15, pp. 829–35.

    Article  PubMed  Google Scholar 

  • Keire, P., Shearer, A., Shefer, G., and Yablonka-Reuveni, Z., Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells, Methods Mol. Biol., 2013, vol. 946, pp. 431–468.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konigsberg, I.R., Clonal analysis of myogenesis, Science, 1963, vol. 140, pp. 1273–1284.

    Article  CAS  PubMed  Google Scholar 

  • Lash, G.E., Otun, H.A., Innes, B.A., Bulmer, J.N., and Searle, R.F. et, al., Low oxygen concentrations inhibit trophoblast cell invasion from early gestation placental explants via alterations in levels of the urokinase plasminogen activator system, Biol. Reprod., 2006, vol. 74, pp. 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.H. and Kemp, D.M., Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions, Biochem. Biophys. Res. Commun., 2006, vol. 341, pp. 882–888.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Kimura, E., Fall, B.M., Reyes, M., Angello, J.C., Welikson, R., Hauschka, S.D., and Chamberlain, J.S., Stable transduction of myogenic cells with lentiviral vectors expressing a minidystrophin, Gene Ther., 2005, vol. 12, pp. 1099–1108.

    Article  CAS  PubMed  Google Scholar 

  • Malashicheva, A., Kanzler, B., Tolkunova, E., Trono, D., and Tomilin, A., Lentivirus as a tool for lineage-specific gene manipulations, Genesis, 2007, vol. 45, pp. 456–4569.

    Article  CAS  PubMed  Google Scholar 

  • Malashicheva, A.B., Kanzler, B., Tolkunova, E.N., Trono, D., and Tomilin, A.N., The application of lentiviral vectors for tissue-specific gene manipulations, Tsitologiia, 2008, vol. 50, no. 4, pp. 370–375.

    CAS  PubMed  Google Scholar 

  • Mancini, A., Sirabella, D., Zhang, W., Yamazaki, H., Shirao, T., and Krauss, R.S., Regulation of myotube formation by the actin-binding factor drebrin, Skelet. Muscle, 2011, vol. 1, pp. 36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mauro, A., Satellite cell of skeletal muscle fibers, J. Biophys. Biochem. Cytol., 1961, vol. 9, pp. 493–495.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno, H., Zuk, P.A., Zhu, M., Lorenz, H.P., Benhaim, P., and Hedrick, M.H., Myogenic differentiation by human processed lipoaspirate cells, Plast. Reconstr. Surg., 2002, vol. 109, pp. 199–209.

    Article  PubMed  Google Scholar 

  • Musaró, A. and Barberi, L., Isolation and culture of mouse satellite cells, Methods Mol. Biol., 2010, vol. 633, pp. 101–111.

    Article  PubMed  Google Scholar 

  • Nabel, E.G., Gene therapy for cardiovascular disease, Circulation, 1995, vol. 91, pp. 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Pasut, A., Jones, A.E., and Rudnicki, M.A., Isolation and culture of individual myofibers and their satellite cells from adult skeletal muscle, J. Vis. Exp., 2013, vol. 73, pp. e50074.

    PubMed  Google Scholar 

  • Ravenscroft, G., Nowak, K.J., Jackaman, C., Clément, S., Lyons, M.A., Gallagher, S., Bakker, A.J., and Laing, N.G., Dissociated flexor digitorum brevis myofiber culture system—a more mature muscle culture system, Cell Motil. Cytoskeleton, 2007, vol. 64, pp. 727–738.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, A.M., Pisani, D., Dechesne, C.A., Turc-Carel, C., Kurzenne, J.Y., Wdziekonski, B., Villageois, A., Bagnis, C., Breittmayer, J.P., Groux, H., Ailhaud, G., and Christian, C., Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse, J. Exp. Med., 2005, vol. 201, pp. 1397–1405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saito, T., Dennis, J.E., Lennon, D.P., Young, R.G., and Caplan, A.I., Myogenic expression of mesenchymal stem cells within myotubes of mdx mice in vitro and in vivo, Tissue Eng., 1995, vol. 1, pp. 327–343.

    Article  CAS  PubMed  Google Scholar 

  • Shefer, G. and Yablonka-Reuveni, Z., Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells, Methods Mol. Biol., 2005, vol. 290, pp. 281–304.

    PubMed Central  PubMed  Google Scholar 

  • Snow, M.H., Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study, Anat. Rec., 1977, vol. 188, pp. 201–217.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, R.O., Spratt, S.K., Lagarde, C., Bohl, D., Kaspar, B., Sloan, B., Cohen, L.K., and Danos, O., Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice, Hum Gene Ther., 1997, vol. 8, pp. 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  • Strem, B.M., Hicok, K.C., Zhu, M., Wulur, I., Alfonso, Z., Schriber, R.E., Fraser, J.K., and Hedrick, M.H., Multipotential differentiation of adipose tissue-derived stem cells, Keio J. Med., 2005, vol. 54, pp. 132–141.

    Article  CAS  PubMed  Google Scholar 

  • Torsney, E., Charlton, R., Parums, D., Collis, M., and Arthur, H.M., Inducible expression of human endoglin during inflammation and wound healing in vivo, Inflamm. Res., 2002, vol. 51, pp. 464–470.

    Article  CAS  PubMed  Google Scholar 

  • Wakitani, S., Saito, T., and Caplan, A.I., Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine, Muscle Nerve, 1995, vol. 18, pp. 1417–1426.

    Article  CAS  PubMed  Google Scholar 

  • Yaffe D., Cellular aspects of muscle differentiation in vitro, Curr. Top. Dev. Biol., 1969, vol. 4, pp. 37–77.

    Article  CAS  PubMed  Google Scholar 

  • Yablonka-Reuveni, Z., Day, K., Vine, A., and Shefer, G., Defining the transcriptional signature of skeletal muscle stem cells, J. Anim. Sci., 2008, vol. 86,suppl. 14, pp. E207–E216.

    CAS  PubMed  Google Scholar 

  • Yin, H., Price, F., and Rudnicki, M.A., Satellite cells and the muscle stem cell niche, Physiol. Rev., 2013, vol. 93, pp. 23–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuk, P.A., Zhu, M., Ashjian, P., De, Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H., Human adipose tissue is a source of multipotent stem cells, Mol. Biol. Cell., 2002, vol. 13, pp. 4279–4295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuk, P.A, Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H., Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng., 2001, vol. 7, pp. 211–228.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kostareva.

Additional information

Original Russian Text © N.A. Smolina, A.Y. Davidova, I.A. Schukina, A.V. Karpushev, A.B. Malashicheva, R.I. Dmitrieva, A.A. Kostareva, 2014, published in Tsitologiya, 2014, Vol. 56, No. 4, pp. 291–299.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolina, N.A., Davidova, A.Y., Schukina, I.A. et al. Comparative assessment of different approaches for obtaining terminally differentiated cell lines. Cell Tiss. Biol. 8, 321–329 (2014). https://doi.org/10.1134/S1990519X14040099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X14040099

Keywords

Navigation