Skip to main content
Log in

Splitting of ScS and S waves from the M w 8.4 Okhotsk deep-focus earthquake (May 24, 2013) and its strong aftershocks

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The parameters of split shear ScS and S waves from the strongest (M w = 8.4) Okhotsk earthquake and its strong aftershocks that occurred in the mantle’s transitional zone in the backarc part of the Kamchatka subduction zone are measured. The measurement results show domination of the fast ScS wave’s east azimuths (110°–149°), which are orthogonal to the trench orientation, and the time difference between the arrivals of the ScS waves (δt) in the range of 0.9–1.6 s. The fast S wave from the Okhotsk earthquake is east-directed (89°), and the time difference between its arrivals is up to 2.5 s. As for aftershocks, the azimuths of the fast S waves are oriented in parallel to the trench, and δt are estimated at 1.2–1.3 s. The orientations of the azimuths for the ScS and S waves are consistent with the model of the transverse-isotropic symmetry of the medium with the symmetry axis tilted along the plate dip and/or along the trench strike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Vinnik, G. L. Kosarev, and L. I. Makeeva, “Anisotropic lithospheres based on SKS and SKKS wave observations,” Dokl. Akad. Nauk SSSR 278(6), 1335–1339 (1984).

    Google Scholar 

  2. Zh Li and D. M. Luneva, “Anisotropic medium and temporal variations of azimuth of rapid S-wave beneath South Kamchatka during 1993–2002,” Fiz. Zemli, No. 4, 40–56 (2006).

    Google Scholar 

  3. L. A. Alpert, T. W. Becker, and I. W. Bailey, “Global slab deformation and centroid moment tensor constraints on viscosity,” Geochem. Geophys. Geosyst 11, Q12006 (2010).

    Article  Google Scholar 

  4. J. R. Bowman and M. Ando, “Shear-wave splitting in the upper-mantle wedge above the Tonga Subduction Zone,” Geophys. J. RAS 88, 25–41 (1987).

    Google Scholar 

  5. P. Chen and M. R. Brudzinski, “Seismic anisotropy in the mantle transition zone beneath Fiji-Tonga,” Geophys. Rev. Lett. 30(13), 1682 (2003).

    Article  Google Scholar 

  6. M. Faccenda, “Mid mantle seismic anisotropy around dubduction zones,” Phys. Earth Planet. Inter. 227, 1–19 (2014).

    Article  Google Scholar 

  7. K. M. Fischer, M. J. Fouch, D. A. Wiens, and M. S. Boettcher, “Anisotropy and flow in Pacific dubduction zone back-arcs,” Pure Appl. Geophys. 151, 463–475 (1998).

    Article  Google Scholar 

  8. B. J. Foley and M. D. Long, “Upper and mid-mantle anisotropy beneath the Tonga slab,” Geophys. Rev. Lett. 38, L02303 (2011).

    Article  Google Scholar 

  9. M. J. Fouch and K. M. Fischer, “Mantle anisotropy beneath Northwest Pacific Plate,” J. Geophys. Res. 101(B7), 15987–16002 (1996).

    Article  Google Scholar 

  10. Y. Fukao, “Evidence from core-reflected shear waves for anisotropy in the Earth’s mantle,” Nature 309, 695–698 (1984).

    Article  Google Scholar 

  11. B. Isacks and P. Molnar, “Distribution of stress in the descending lithosphere from a global survey of focal mechanism solutions of mantle earthquakes,” Rev. Geophys. Sp. Phys. 9, 103–174 (1971).

    Article  Google Scholar 

  12. T. Kawazoe, T. Ohuchi, Y. Nishihara, N. Nishiyama, K. Fujino, and T. Irifune, “Seismic anisotropy in the mantle transition zone induced by shear deformation of wadsleyite,” Phys. Earth Planet. Inter., No. 216, 91–98 (2013).

    Google Scholar 

  13. V. Levin, D. Droznin, J. Park, and E. Gordeev, “Detailed mapping of seismic anisotropy with local shear waves in southeastern Kamchatka,” Geophys. J. Int. 158, 1009–1023 (2004).

    Article  Google Scholar 

  14. M. N. Luneva and J. M. Lee, “Shear wave splitting beneath South Kamchatka during 3-year period associated with the 1997 Kronotsky earthquake,” Tectonophysics 374, 135–161 (2003).

    Article  Google Scholar 

  15. D. Mainprice, A. Tommasi, D. Ferre, P. Carrez, and P. Cordier, “Predicted glide system and crystal preferred orientations of poly-crystalline silicate Mg perovskite at high-pressure: implications for the seismic anisotropy in the lower mantle,” Earth Planet. Sci. Lett. 271, 135–144 (2008).

    Article  Google Scholar 

  16. NEIC, http://earthquake.usgs.gov/regional/neic, United States Geological Survey, USA.

  17. M. Panning and B. Romanowicz, “A three-dimensional radially anisotropic model of shear velocity in the whole mantle,” Geophys. J. Int. 167, 361–79 (2006).

    Article  Google Scholar 

  18. V. Peiton, V. Levin, J. Park, M. T. Brandon, J. Lees, E. Gordeev, and A. Ozerov, “Mantle flow at a slab edge: seismic anisotropy in the Kamchatka Region,” Geophys. Rev. Lett. 28, 379–382 (2001).

    Article  Google Scholar 

  19. W. P. Schellart and L. Moresi, “A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: results from dynamic subduction models with an overriding plate,” J. Geophys. Res. Solid Earth, 118 (2013). doi:10.1002/jgrb.50173.

    Google Scholar 

  20. P. Silver and W. Chan, “Shear wave slitting and subcontinental mantle deformation,” J. Geophys. Res. 96(10), 16429–16454 (1991).

    Article  Google Scholar 

  21. A. Tommasi, D. Mainprice, P. Cordier, C. Thoraval, H. Couvy, “Strain-induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone,” J. Geophys. Res. 109, B12405 (2004).

  22. L. Vecsey, J. Plomerova, and V. Babuska, “Shear-wave splitting measurements—problems and solutions,” Tectonophysics 462, 178–196 (2008).

    Article  Google Scholar 

  23. E. Walsh, R. Arnold, and M. K. Savage, “Silver and chan revisited,” J. Geophys. Res. Solid Earth 118, 1–16 (2013).

    Article  Google Scholar 

  24. E. Wirth and M. D. Long, “Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones,” Phys. Earth Planet. Inter. 181, 141–154 (2010).

    Article  Google Scholar 

  25. J. Wookey and J. M. Kendall, “Evidence of midmantle anisotropy from shear wave splitting and the influence of shear-coupled P waves,” J. Geophys. Res. 109, B07309 (2004).

    Google Scholar 

  26. L. Ye, T. Lay, H. Kanamori, and K. D. Koper, “Energy release of the 2013 Mw 8.3 Sea of Okhotsk Earthquake and deep slab stress heterogeneity,” Science 341, 1380–1384 (2013).

    Article  Google Scholar 

  27. Z. Zhan, H. Kanamori, V. C. Tsai, D. V. Helmberger, and S. Wei, “Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes,” Earth. Planet. Science. Lett. 385, 89–96 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Luneva.

Additional information

Original Russian Text © M.N. Luneva, V.V. Pupatenko, 2014, published in Tikhookeanskaya Geologiya, 2014, Vol. 33, No. 6, pp. 63–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luneva, M.N., Pupatenko, V.V. Splitting of ScS and S waves from the M w 8.4 Okhotsk deep-focus earthquake (May 24, 2013) and its strong aftershocks. Russ. J. of Pac. Geol. 8, 456–463 (2014). https://doi.org/10.1134/S1819714014060050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714014060050

Keywords

Navigation