Skip to main content
Log in

Numerical simulation of momentumless turbulent wake dynamics in linearly stratified medium

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This paper presents comparison of two numerical models of the momentumless turbulent wake dynamics behind a body of revolution in a linearly stratified medium, namely, the model based on direct (DNS) numerical integration of Navier–Stokes equations in the Oberbeck–Boussinesq approximation and the mathematical model with application of a semi-empirical turbulence model of the third order. The results of calculations by these two models agree with the known experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozmidov, R.V. and Nabatov, V.N., Hydrophysical Model of a Turbulent Wake behind a Seamount, Izv. AN, Ser. FAO, 1992, vol. 28, no. 9, pp. 981–987.

    Google Scholar 

  2. Wang, Zh. and Goodman, L., Evolution of the Spatial Structure of a Thin Phytoplankton Layer into a Turbulent Field, Mar. Prog. Ser., 2009, vol. 374, pp. 57–74.

    Article  Google Scholar 

  3. Lavery, T.J., Roudnew, B., Seuront, L., Mitchell, J.G., and Middleton, J., Can Whales Mix the Ocean?, Biogeosci. Discuss., 2012, vol. 9, iss. 7, pp. 8387–8403.

    Article  ADS  Google Scholar 

  4. Schooley, A.H. and Stewart, R.W., Experiments with a Self-Propelled Body Submerged in a Fluid with Vertical Density Gradient, J. Fluid Mech., 1963, vol. 15, pp. 83–96.

    Article  ADS  MATH  Google Scholar 

  5. Witte, A.B., Holographic Interferometry of a Submarine Wake in Stratified Flow, J. Hydronaut., 1972, vol. 6, pp. 114/115.

    Article  Google Scholar 

  6. Merrit, C.E., Wake Growth in Stratified Flow, AIAA J., 1974, vol. 12, pp. 940–949.

    Article  ADS  Google Scholar 

  7. Lin, J.T. and Pao, Y.H., Wakes in Stratified Fluids, Ann. Rev. Fluid Mech., 1979, vol. 11, pp. 317–338.

    Article  ADS  Google Scholar 

  8. Hassid, S., Collapse of Turbulent Wakes in Stable Stratified Media, J. Hydronaut., 1980, vol. 14, pp. 25–32.

    Article  ADS  Google Scholar 

  9. Gilreath, H.E. and Brandt, A., Experiments on the Generation of Internal Waves in a Stratified Fluid, AIAA Paper, 1983, vol. 1704, p. 12.

    Google Scholar 

  10. Sysoeva, E.Ya. and Chashechkin, Yu.D., Vortex Structure of the Wake of a Sphere in a Stratified Fluid, J. Appl. Mech. Techn. Phys., 1986, vol. 27, iss. 2, pp. 190–196.

    Article  ADS  Google Scholar 

  11. Hopfinger, E.J., Flor, J.B., Chomaz, J.M., and Bonneton, P., InternalWaves Generated by a Moving Sphere and ItsWake in Stratified Fluid, Exps. Fluids, 1991, vol. 11, pp. 255–261.

    Article  ADS  Google Scholar 

  12. Lin, Q., Boyer, D.L., and Fernando, J.S., Turbulent Wakes of Linearly Stratified Flow past a Sphere, Phys. Fluids A, 1992, vol. 4, pp. 1687–1696.

    Article  ADS  Google Scholar 

  13. Chomaz, J.M., Bonneton, P., Butet, A., and Hopfinger, E.J., Vertical Diffusion of the FarWake of a Sphere Moving in a Stratified Fluid, Phys. Fluids A, 1993, vol. 5, pp. 2799–2806.

    Article  ADS  Google Scholar 

  14. Bonneton, P., Chomaz, J.M., and Hopfinger, E.J., Internal Waves Produced by the Turbulent Wake of a Sphere Moving Horizontally in a Stratified Fluid, J. Fluid Mech., 1993, vol. 254, pp. 23–40.

    Article  ADS  Google Scholar 

  15. Shishkina, O.D., The Wake Regime Influence on Hydrodynamic Characteristics of the Submerged Sphere in the Stratified Fluid, Preprints of the Fourth Int. Symp. on Stratified Flows, Hopfinger, E., Voisin, B., and Chavand, G., Eds., Grenoble Inst. of Mech., Grenoble, 1994, vol. 3, sess. A5, no. 40.

    Google Scholar 

  16. Chashechkin, Yu. D., Internal Waves, Vortices and Turbulence in a Wake past a Bluff Body in a Continuously Stratified Liquid, Preprints of the Fourth Int. Symp. on Stratified Flows, Hopfinger, E., Voisin, B., and Chavand, G., Eds., Grenoble Inst. of Mech., Grenoble, 1994, vol. 2, sess. B4, no. 29.

  17. Spedding, G.R., Browand, F.K., and Fincham, A.M., The Structure and Long-Time Evolution of Bluff Body Wakes in a Stable Stratification, Preprints of the Fourth Int. Symp. on Stratified Flows, Hopfinger, E., Voisin, B., and Chavand, G., Eds., Grenoble Inst. of Mech., Grenoble, 1994, vol. 2, sess. B4, no. 196.

  18. Voisin, B., Rayonnement des ondes Internes de Gravite. Application aux Corps enMouvement, Ph. D. Thesis, Universitet Pierre etMarie Curie, Paris, 1991.

    Google Scholar 

  19. Onufriev, A.T., Turbulent Wake in a Stratified Medium, J. Appl. Mech. Techn. Phys., 1970, vol. 11, iss. 5, pp. 768–772.

    Article  ADS  Google Scholar 

  20. Lewellen, W.S., Teske, M.E., and Donaldson, C.D., Examples of Variable Density Flows Computed by Second-Order Closure Description of Turbulence, AIAA J., 1976, vol. 14, pp. 382–387.

    Article  ADS  Google Scholar 

  21. Schetz, J.A., Injection and Mixing in Turbulent Flow, New York: Am. Inst. of Aeronautics and Astronautics, 1980.

    Google Scholar 

  22. Danilenko, A.Yu., Kostin, V.I., and Tolstykh, A.I., On an Implicit Algorithm for Computation of Flows of Homogeneous and Inhomogeneous Fluid, Preprint of the Computing Center, Russian Acad. Sci., Moscow, 1985.

    Google Scholar 

  23. Chernykh, G.G., Fedorova, N.N., and Moshkin, N.P., Numerical Simulation of TurbulentWakes, Russ. Th. Appl.Mech., 1992, vol. 2, pp. 295–304.

    Google Scholar 

  24. Glushko, G.S., Gumilevskii, A.G., and Polezhaev, V.I., Evolution of Turbulent Wakes of Sphere-Shaped Bodies in Stably Stratified Media, Izv. RAN, Ser. Mekh. Zhidk. Gaza, 1994, no. 1, pp. 13–22.

    Google Scholar 

  25. Schooley, A.H., Wake Collapse in a Stratified Fluid, Sci., 1967, vol. 157, pp. 421–423.

    Article  ADS  Google Scholar 

  26. Trokhan, A.M. and Chashechkin, Yu.D., Generation of Internal Waves in Stratified Fluid by an Impulse Hydrodynamic Line Source (two-dimensional problem), in Theory of Diffraction and Propagation of Waves: Abstracts of the VII All-Union Symp. on the Diffraction and Propagation of Waves, Moscow: USSR Acad. Sci., 1977, vol. 3, pp. 186–189.

    Google Scholar 

  27. Vasiliev, O.F., Kuznetsov, B.G., Lytkin, Yu.M., and Chernykh, G.G., Development of the Turbulized Fluid Region in Stratified Medium, Proc. Int. Symp. on Stratified Flows, Paper 4, Novosibirsk, Institute of Hydrodynamics, Siberian Branch, USSR Acad. Sci., 1972.

    Google Scholar 

  28. Lytkin, Yu.M. and Chernykh, G.G., Flow Similarity with Respect to Froude Density Number and Energy Balance in the Evolution of a TurbulentMixing Zone in a Stratified Medium, in Mathematical Problems of Continuum Mechanics (A82-27485 12-47), Novosibirsk: Institute of Hydrodynamics, USSR Acad. Sci., 1980, pp. 70–89.

    Google Scholar 

  29. Voropaeva, O.F., Chashechkin, Yu.D., and Chernykh, G.G., Diffusion of Passive Admixture from a Local Source in a TurbulentMixing Zone, Fluid Dyn., 1997, vol. 32, no. 2, pp. 212–218.

    MATH  Google Scholar 

  30. Chernykh, G.G. and Voropayeva, O.F., NumericalModeling ofMomentumless TurbulentWake Dynamics in a LinearlyStratified Medium, Comp. Fluids, 1999, vol. 28, no. 3, pp. 281–306.

    Article  MATH  Google Scholar 

  31. Voropaeva, O.F., Moshkin, N.P., and Chernykh, G.G., InternalWaves Generated by TurbulentWakes behind Towed and Self-Propelled Bodies in a Linearly Stratified Medium, Mat. Model., 2000, vol. 12, no. 1, pp. 77–94.

    MathSciNet  MATH  Google Scholar 

  32. Voropaeva, O.F., Moshkin, N.P., and Chernykh, G.G., Internal Waves Generated by Turbulent Wakes in a Stably Stratified Medium, Dokl. Fiz., 2003, vol. 48, no. 9, pp. 517–521.

    Article  MathSciNet  MATH  Google Scholar 

  33. Moshkin, N.P., Fomina, A.V., and Chernykh, G.G., Numerical Modeling of Dynamics of Turbulent Wake behind Towed Body in the Linearly Stratified Medium, Mat. Model., 2007, vol. 19, no. 1, pp. 29–56.

    MATH  Google Scholar 

  34. Chernykh, G.G., Fomina, A.V., and Moshkin, N.P., Numerical Models of TurbulentWake Dynamics behind Towed Body in Linearly Stratified Fluid, J. Eng. Therm., 2009, vol. 18, no. 4, pp. 279–305.

    Article  MathSciNet  Google Scholar 

  35. Moshkin, N.P., Chernykh, G.G., and Fomina, A.V., On the Influence of Small Total Momentum Imbalance on TurbulentWake Dynamics in the Linearly Stratified Fluids, Mat. Model., 2005, vol. 17, no. 1, pp. 19–33.

    MATH  Google Scholar 

  36. Chernykh, G.G., Moshkin, N.P, and Fomina, A.V., Dynamics of TurbulentWake with Small ExcessMomentum in Stratified Media, Comm. Nonlinear Sci. Numer. Simul., 2009, vol. 14, no. 4, pp. 1307–1323.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Voropayeva, O.F., Ilyushin, B.B., and Chernykh, G.G., Numerical Simulation of the Far Momentumless Turbulent Wake in a Linearly Stratified Medium, Dokl. Phys., 2002, vol. 47, no. 10, pp. 762–766.

    Article  ADS  Google Scholar 

  38. Chernykh, G.G. and Voropayeva, O.F., NumericalModels of the Second and Third Orders for aMomentumless Turbulent Wake Dynamics in a Linearly Stratified Medium, Russ. J. Num. Anal. Math. Model., 2008, vol. 23, no. 6, pp. 539–549.

    Google Scholar 

  39. Voropayeva, O.F., Anisotropic Turbulence Decay in a Far Momentumless Wake in a Stratified Medium, Math.Models Comp. Simul., 2009, vol. 1, no. 5, pp. 605–619.

    Article  Google Scholar 

  40. Vasiliev, O.F., Voropaeva, O.F., and Chernykh, G.G., NumericalModeling of Anisotropic Decay of a Distant Turbulent Wake behind a Self-Propelled Body in a Linearly Stratified Medium, Dokl. Phys., 2009, vol. 54, no. 6, pp. 301–305.

    Article  ADS  Google Scholar 

  41. Spedding, G.R., Anisotropy in Turbulence Profiles of Stratified Wakes, Phys. Fluids, 2001, vol. 13, no. 8, pp. 2361–2372.

    Article  ADS  MATH  Google Scholar 

  42. Gourlay, M.J., Arendt, S.C., Fritts, D.C., and Werne, J., Numerical Modeling of Initially TurbulentWakes with NetMomentum, Phys. Fluids, 2001, vol. 13, no. 12, pp. 3782–3802.

    Article  ADS  MATH  Google Scholar 

  43. Spedding, G.R., Vertical Structure in Stratified Wakes with High Initial Froude Number, J. Fluid Mech., 2002, vol. 454, pp. 71–112.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Domermuth, D.G., Rottman, J.W., Innis, G.E., and Novikov, E.A., Numerical Simulation of the Wake of a Towed Sphere in aWeakly Stratified Fluid, J. Fluid Mech., 2002, vol. 473, pp. 83–101.

    Article  ADS  MATH  Google Scholar 

  45. Balandina, G.N., Papko, V.V., Sergeev, D.A., and Troitskaya, Yu.I., Evolution of a Far Turbulent Wake past a Towed Body in Stratified Fluid at High Reynolds and Froude Numbers, Izv. RAN, Ser. FAO, 2004, vol. 40, no. 1, pp. 112–127.

    Google Scholar 

  46. Meunier, P. and Spedding, G.R., Stratified PropelledWakes, J. Fluid Mech., 2006, vol. 552, pp. 229–256.

    Article  ADS  MATH  Google Scholar 

  47. Druzhinin, O.A., Papko, V.V., Sergeev, D.A., and Troitskaya, Yu.I., Laboratory Numerical and Theoretical Modeling of Flows in a FarWake in Stratified Fluid, Izv. RAN, Ser. FAO, 2006, vol. 42, no. 5, pp. 1–13.

    Google Scholar 

  48. Druzhinin, O.A., Internal Wave Generation by a Turbulent Jet in Stratified Fluid, Izv. RAN, Ser. Mekh. Zhidk. Gaza, 2009, no. 2, pp. 46–59.

    MathSciNet  Google Scholar 

  49. Brucker, K.A. and Sarkar, S., A Comparative Study of Self-Propelled and Towed Wakes in a Stratified Fluid, J. Fluid Mech., 2010, vol. 652, pp. 373–404.

    Article  ADS  MATH  Google Scholar 

  50. De Stadler, M.B., Sarkar, S., and Brucker, K.A., Effect of the Prandtl Number on a Stratified TurbulentWake, Phys. Fluids, 2010, vol. 22, pp. 095102-1–095102-15.

  51. De Stadler, M.B. and Sarkar, S., Simulation of a Propelled Wake with Moderate Excess Momentum in a Stratified Fluid, J. Fluid Mech., 2012, vol. 692, pp. 28–52.

    Article  ADS  MATH  Google Scholar 

  52. Gibson, M.M. and Launder, B.E., Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer, J. Fluid Mech., 1978, vol. 86, pp. 491–511.

    Article  ADS  MATH  Google Scholar 

  53. Ilyushin, B.B., Higher-Moment Diffusion in Stable Stratification, in Closure Strategies for Turbulent and Transitions Flows, Launder, B.E. and Sandham, N.D., Eds., Cambridge: Cambridge Univ. Press, 2002, pp. 424–448.

    Chapter  Google Scholar 

  54. Rodi, W., Examples of Calculation Methods for Flow and Mixing in Stratified Fluids, J. Geophys. Res., 1987, vol. 92, no. C5, pp. 5305–5328.

    Article  ADS  Google Scholar 

  55. Druzhinin, O.A., Collapse and Self-Similarity of Turbulent Jets in Picnocline, Izv. RAN, Ser. Fiz. Atm. Okeana, 2003, vol. 39, no. 5, pp. 697–711.

    MathSciNet  Google Scholar 

  56. Belotserkovskii, O.M., Chislennoe modelirovanie v mekhanike sploshnykh sred (Numerical Modeling in Continuum Mechanics), Moscow: Nauka, 1984.

    Google Scholar 

  57. Fletcher, G.K., Vychislitelnye metody v dinamike zhidkostei (Computational Methods in Fluid Dynamics), Moscow: Mir, 1991, vol. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. F. Voropaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voropaeva, O.F., Druzhinin, O.A. & Chernykh, G.G. Numerical simulation of momentumless turbulent wake dynamics in linearly stratified medium. J. Engin. Thermophys. 25, 85–99 (2016). https://doi.org/10.1134/S1810232816010082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232816010082

Keywords

Navigation