Skip to main content
Log in

Dynamics of Rubber Chaplygin Sphere under Periodic Control

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

This paper examines the motion of a balanced spherical robot under the action of periodically changing moments of inertia and gyrostatic momentum. The system of equations of motion is constructed using the model of the rolling of a rubber body (without slipping and twisting) and is nonconservative. It is shown that in the absence of gyrostatic momentum the equations of motion admit three invariant submanifolds corresponding to plane-parallel motion of the sphere with rotation about the minor, middle and major axes of inertia. The above-mentioned motions are quasi-periodic, and for the numerical estimate of their stability charts of the largest Lyapunov exponent and charts of stability are plotted versus the frequency and amplitude of the moments of inertia. It is shown that rotations about the minor and major axes of inertia can become unstable at sufficiently small amplitudes of the moments of inertia. In this case, the so-called “Arnol’d tongues” arise in the stability chart. Stabilization of the middle unstable axis of inertia turns out to be possible at sufficiently large amplitudes of the moments of inertia, when the middle axis of inertia becomes the minor axis for a part of a period. It is shown that the nonconservativeness of the system manifests itself in the occurrence of limit cycles, attracting tori and strange attractors in phase space. Numerical calculations show that strange attractors may arise through a cascade of period-doubling bifurcations or after a finite number of torus-doubling bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ardentov, A. A., Karavaev, Y. L., and Yefremov, K. S., Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: The Problem of Experimental Realization, Regul. Chaotic Dyn., 2019, vol. 24, no. 3, pp. 312–328.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V. I., Ordinary Differential Equations, Berlin: Springer, 2006.

    Google Scholar 

  3. Artemova, E.M. and Kilin, A.A., An Integrable Case in the Dynamics of a Three-Link Vehicle, in Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, 2020), submitted.

    Google Scholar 

  4. Artemova, E. M. and Kilin, A. A., Dynamics and Control of a Three-Link Wheeled Vehicle, in Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, 2020), submitted.

    Google Scholar 

  5. Bizyaev, I. A., The Inertial Motion of a Roller Racer, Regul. Chaotic Dyn., 2017, vol. 22, no. 3, pp. 239–247.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., Chaplygin Sleigh with Periodically Oscillating Internal Mass, Europhys. Lett., 2017, vol. 119, no. 6, 60008, 7 pp.

    Google Scholar 

  7. Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., The Chaplygin Sleigh with Friction Moving due to Periodic Oscillations of an Internal Mass, Nonlinear Dyn., 2019, vol. 95, no. 1, pp. 699–714.

    Article  Google Scholar 

  8. Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., Different Models of Rolling for a Robot Ball on a Plane As a Generalization of the Chaplygin Ball Problem, Regul. Chaotic Dyn., 2019, vol. 24, no. 5, pp. 560–582.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., Exotic Dynamics of Nonholonomic Roller Racer with Periodic Control, Regul. Chaotic Dyn., 2018, vol. 23, nos. 7–8, pp. 983–994.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bohl, P., Über ein in der Theorie der säkularen Störungen vorkommendes Problem, J. Reine Angew. Math., 1909, vol. 135, pp. 189–203.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bolotin, S. V., The Problem of Optimal Control of a Chaplygin Ball by Inernal Rotors, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 559–570.

    Article  MathSciNet  MATH  Google Scholar 

  12. Borisov, A. V., Ivanova, T. B., Karavaev, Yu. L., and Mamaev, I. S., Theoretical and Experimental Investigations of the Rolling of a Ball on a Rotating Plane (Turntable), Eur. J. Phys., 2018, vol. 39, no. 6, 065001, 13 pp.

    Google Scholar 

  13. Borisov, A. V., Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., Stabilization of the Motion of a Spherical Robot Using Feedbacks, Appl. Math. Model., 2019, vol. 69, pp. 583–592.

    Article  MathSciNet  Google Scholar 

  14. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., Historical and Critical Review of the Development of Nonholonomic Mechanics: The Classical Period, Regul. Chaotic Dyn., 2016, vol. 21, no. 4, pp. 455–476.

    Article  MathSciNet  MATH  Google Scholar 

  15. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bou-Rabee, N. M., Marsden, J. E., and Romero, L. A., A Geometric Treatment of Jellett’s Egg, ZAMM Z. Angew. Math. Mech., 2005, vol. 85, no. 9, pp. 618–642.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bravo-Doddoli, A. and García-Naranjo, L. C., The Dynamics of an Articulated n-Trailer Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 497–517.

    Article  MathSciNet  MATH  Google Scholar 

  18. Broer, H. and Simó, C., Hill’s Equation with Quasi-Periodic Forcing: Resonance Tongues, Instability Pockets and Global Phenomena, Bol. Soc. Brasil. Mat. (N. S.), 1998, vol. 29, no. 2, pp. 253–293.

    Article  MathSciNet  MATH  Google Scholar 

  19. Chaplygin, S.A., On the Theory of Motion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  20. Darwin, G. H.,VIII. On the Influence of Geological Changes on the Earth’s Axis of Rotation, Philos. Trans. R. Soc. Lond., 1877, vol. 167, pp. 271–312.

    Google Scholar 

  21. Fedorov, Yu. N. and García-Naranjo, L. C., The Hydrodynamic Chaplygin Sleigh, J. Phys. A, 2010, vol. 43, no. 43, 434013, 18 pp.

    Google Scholar 

  22. Feigenbaum, M. J., Quantitative Universality for a Class of Nonlinear Transformations, J. Stat. Phys., 1978, vol. 19, no. 1, pp. 25–52.

    Article  MathSciNet  MATH  Google Scholar 

  23. Gonchenko, A. S., Gonchenko, S.V., and Kazakov, A. O., Richness of Chaotic Dynamics in the Nonholonomic Model of Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.

    Article  MathSciNet  MATH  Google Scholar 

  24. Gonchenko, A.S., Gonchenko, S. V., Kazakov, A. O., and Samylina, E. A., Chaotic Dynamics and Mul-tistability in the Nonholonomic Model of a Celtic Stone, Radiophys. Quantum El., 2019, vol. 61, no. 10, pp. 773–786; see also: Izv. Vyssh. Uchebn. Zaved. Radiofizika, 2018, vol. 61, no. 10, pp. 867–882.

    Article  Google Scholar 

  25. Hairer, E., Lubich, Ch., and Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Ser. Comput. Math., vol. 31, New York: Springer, 2006.

  26. Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., Controlled Motion of a Spherical Robot of Pendulum Type on an Inclined Plane, Dokl. Phys., 2018, vol. 63, no. 7, pp. 302–306; see also: Dokl. Akad. Nauk, 2018, vol. 481, no. 3, pp. 258–263.

    Article  Google Scholar 

  27. Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., Controlled Motion of a Spherical Robot with Feedback: 1, J. Dyn. Control Syst., 2018, vol. 24, no. 3, pp. 497–510.

    Article  MathSciNet  MATH  Google Scholar 

  28. Ilin, K. I., Moffatt, H. K., and Vladimirov, V. A., Dynamics of a Rolling Robot, Proc. Natl. Acad. Sci. USA, 2017, vol. 114, no. 49, pp. 12858–12863.

    Article  MathSciNet  MATH  Google Scholar 

  29. Jorba, A., Simó, C., On the Reducibility of Linear Differential Equations with Quasiperiodic Coefficients, J. Differential Equations, 1992, vol. 98, no. 1, pp. 111–124.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kamke, E., Differentialgleichungen. Lösungsmethoden und Lösungen: Vol. 1. Gewöhnliche Differential-gleichungen, 9th ed., Stuttgart: Teubner, 1977.

    Book  MATH  Google Scholar 

  31. Kaneko, K., Doubling of Torus, Progr. Theoret. Phys., 1983, vol. 69, no. 6, pp. 1806–1810.

    Article  MathSciNet  MATH  Google Scholar 

  32. Kaneko, K., Oscillation and Doubling of Torus, Progr. Theoret. Phys., 1984, vol. 72, no. 2, pp. 202–215.

    Article  MathSciNet  MATH  Google Scholar 

  33. Karavaev, Yu. L. and Kilin, A. A., Nonholonomic Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform: Theory and Experiments, Proc. Steklov Inst. Math., 2016, vol. 295, pp. 158–167; see also: Tr. Mat. Inst. Steklova, 2016, vol. 295, pp. 174–183.

    Article  MathSciNet  MATH  Google Scholar 

  34. Kazakov, A. O., On the Appearance of Mixed Dynamics as a Result of Collision of Strange Attractors and Repellers in Reversible Systems, Radiophys. Quantum El., 2019, vol. 61, nos. 8–9, pp. 650–658; see also: Izv. Vyssh. Uchebn. Zaved. Radiofizika, 2018, vol. 61, nos. 8–9, pp. 729–738.

    Article  Google Scholar 

  35. Kilin, A. A. and Pivovarova, E. N., Chaplygin Top with a Periodic Gyrostatic Moment, Rus. J. Math. Phys., 2018, vol. 25, no. 4, pp. 509–524.

    Article  MathSciNet  MATH  Google Scholar 

  36. Kilin, A. A. and Pivovarova, E. N., The Rolling Motion of a Truncated Ball without Slipping and Spinning on a Plane, Regul. Chaotic Dyn., 2017, vol. 22, no. 3, pp. 298–317.

    Article  MathSciNet  MATH  Google Scholar 

  37. Kilin, A. A. and Pivovarova, E. N., Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges, Regul. Chaotic Dyn., 2019, vol. 24, no. 2, pp. 212–233.

    Article  MathSciNet  MATH  Google Scholar 

  38. Kozlov, V. V., Methods of Qualitative Analysis in the Dynamics of a Rigid Body, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2000 (Russian).

    MATH  Google Scholar 

  39. Kuleshov, A. S., Further Development of the Mathematical Model of a Snakeboard, Regul. Chaotic Dyn., 2007, vol. 12, no. 3, pp. 321–334.

    Article  MathSciNet  MATH  Google Scholar 

  40. Kuleshov, A. S., Mathematical Model of a Skateboard with One Degree of Freedom, Dokl. Phys., 2007, vol. 52, no. 5, pp. 283–286; see also: Dokl. Akad. Nauk, 2007, vol. 414, no. 3, pp. 330–333.

    Article  MATH  Google Scholar 

  41. Kuznetsov, S. P., Effect of a Periodic External Perturbation on a System Which Exhibits an Order-Chaos Transition through Period, JETP Lett., 1984, vol. 39, no. 3, pp. 133–136; see also: Pis'ma v Zh. Eksper. Teoret. Fiz., 1984, vol. 39, no. 3, pp. 113–116.

    Google Scholar 

  42. Kuznetsov, S. P., Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint, Regul. Chaotic Dyn., 2018, vol. 23, no. 2, pp. 178–192.

    Article  MathSciNet  MATH  Google Scholar 

  43. Kuznetsov, S., Feudel, U., and Pikovsky, A., Renormalization Group for Scaling at the Torus-Doubling Terminal Point, Phys. Rev. E, 1998, vol. 57, no. 2, pp. 1585–1590.

    Article  MathSciNet  Google Scholar 

  44. Lerman, L. M. and Turaev, D. V., Breakdown of Symmetry in Reversible Systems, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 318–336.

    Article  MathSciNet  MATH  Google Scholar 

  45. Markeev, A. P., Integrability of the Problem of Rolling of a Sphere with a Multiply Connected Cavity Filled with an Ideal Fluid, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1986, vol. 21, no. 1, pp. 64–65 (Russian).

    Google Scholar 

  46. Markeev, A. P., Dynamics of a Rigid Body that Collides with a Rigid Surface, Izhevsk: R&C Dynamics, Institute of Computer Science, 2014 (Russian).

    Google Scholar 

  47. Martynenko, Yu. G., Motion Control of Mobile Wheeled Robots, J. Math. Sci. (N. Y.), 2007, vol. 147, no. 2, pp. 6569–6606; see also: Fundam. Prikl. Mat., 2005, vol. 11, no. 8, pp. 29–80.

    Article  MathSciNet  MATH  Google Scholar 

  48. Morinaga, A., Svinin, M., and Yamamoto, M., A Motion Planning Strategy for a Spherical Rolling Robot Driven by Two Internal Rotors, IEEE Trans. on Robotics, 2014, vol. 30, no. 4, pp. 993–1002.

    Article  Google Scholar 

  49. Moskvin, A. Yu., Chaplygin’s Ball with a Gyrostat: Singular Solutions, Nelin. Dinam., 2009, vol. 5, no. 3, pp. 345–356 (Russian).

    Article  Google Scholar 

  50. Moskvin, A. Yu., Rubber Ball on a Plane: Singular Solutions, Nelin. Dinam., 2010, vol. 6, no. 2, pp. 345–358 (Russian).

    Article  Google Scholar 

  51. Murray, R. M. and Sastry, S. Sh., Nonholonomic Motion Planning: Steering Using Sinusoids, IEEE Trans. Automat. Control, 1993, vol. 38, no. 5, pp. 700–716.

    Article  MathSciNet  MATH  Google Scholar 

  52. Neimark, Yu. I., On Some Cases of the Dependence of Periodic Motions upon Parameters, Dokl. Akad. Nauk SSSR, 1959, vol. 129, no. 4, pp. 736–739 (Russian).

    MathSciNet  Google Scholar 

  53. Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence, R.I.: AMS, 1972.

    MATH  Google Scholar 

  54. Pollard, B., Fedonyuk, V., and Tallapragada, P., Swimming on Limit Cycles with Nonholonomic Constraints, Nonlinear Dynam., 2019, vol. 97, no. 4, pp. 2453–2468.

    Article  MATH  Google Scholar 

  55. Pollard, B. and Tallapragada, P., Passive Appendages Improve the Maneuverability of Fishlike Robots, IEEE/ASME Trans. Mechatronics, 2019, vol. 24, no. 4, pp. 1586–1596.

    Article  Google Scholar 

  56. Putkaradze, V. and Rogers, S., On the Dynamics of a Rolling Ball Actuated by Internal Point Masses, Meccanica, 2018, vol. 53, no. 15, pp. 3839–3868.

    Article  MathSciNet  Google Scholar 

  57. Rauch-Wojciechowski, S. and Przybylska, M., On Dynamics of Jellet’s Egg. Asymptotic Solutions Revisited, Regul. Chaotic Dyn., 2020, vol. 25, no. 1, pp. 40–58.

    Article  MathSciNet  Google Scholar 

  58. Sacker, R., On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, Report IMM-NYU 333, New York Univ., 1964.

    Google Scholar 

  59. Shen, J., Schneider, D. A., and Bloch, A. M., Controllability and Motion Planning of a Multibody Chaplygin’s Sphere and Chaplygin’s Top, Internat. J. Robust Nonlinear Control, 2008, vol. 18, no. 9, pp. 905–945.

    Article  MathSciNet  MATH  Google Scholar 

  60. Tafrishi, S. A., Esmaeilzadeh, E., Svinin, M., and Yamamoto, M., A Fluid-Actuated Driving Mechanism for Rolling Robots, in Proc. of the IEEE 4th Internat. Conf. on Advanced Robotics and Mechatronics (ICARM, 2019), pp. 256–261.

    Google Scholar 

  61. Tilbury, D., Murray, R., and Sastry, S., Trajectory Generation for the N-Trailer Problem Using Goursat Normal Form, IEEE Trans. Automat. Control, 1995, vol. 40, no. 5, pp. 802–819.

    Article  MathSciNet  MATH  Google Scholar 

  62. Tisserand, F., Tra i té de la Mécanique Céleste: Vol. 2. Théorie de la figure des corps célestes et de leur mouvement de rotation, Paris: Gauthier-Villars, 1891.

    Google Scholar 

  63. Vetchanin, E. V. and Mikishanina, E. A., Vibrational Stability of Periodic Solutions of the Liouville Equations, Russian J. Nonlinear Dyn., 2019, vol. 15, no. 3, pp. 351–363.

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank to Prof. A. A. Kilin and I. A. Bizyaev for useful discussions.

Funding

This work of E. V. Vetchanin (Introduction and Section 2) was supported by the Russian Science Foundation under grant 18-71-00111.

The work of I. S. Mamaev (Sections 1 and 3) was carried out within the framework of the state assignment of the Ministry of Education and Science of Russia (FZZN-2020-0011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivan S. Mamaev or Evgeny V. Vetchanin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamaev, I.S., Vetchanin, E.V. Dynamics of Rubber Chaplygin Sphere under Periodic Control. Regul. Chaot. Dyn. 25, 215–236 (2020). https://doi.org/10.1134/S1560354720020069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720020069

Keywords

MSC2010 numbers

Navigation